Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(5): 01731    DOI: 10.1088/1674-1056/18/5/003
GENERAL Prev   Next  

Mei conserved quantity of Nielsen equation for anon-Chetaev-type non-holonomic system

Zhang Yao-Yua, Cui Jin-Chaob, Jia Li-Qunb
a Electric and Information Engineering College, Pingdingshan University, Pingdingshan 467002, China; b School of Science, Jiangnan University, Wuxi 214122, China
Abstract  The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
Keywords:  Mei symmetry      Mei conserved quantity      non-Chetaev-type non-holonomic system      Nielsen equation     
Received:  11 May 2008      Published:  20 May 2009
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Preparatory Research Foundation of Jiangnan University, China (Grant No 2008LYY011).

Cite this article: 

Cui Jin-Chao, Zhang Yao-Yu, Jia Li-Qun Mei conserved quantity of Nielsen equation for anon-Chetaev-type non-holonomic system 2009 Chin. Phys. B 18 01731

[1] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling, Chen Li-Qun, Fu Jing-Li, Hong Fang-Yu. Chin. Phys. B, 2013, 22(3): 030201.
[2] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(8): 080201.
[3] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng, Xue Yun, Liu Yu-Lu. Chin. Phys. B, 2012, 21(7): 070203.
[4] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao,Sun Xian-Ting,Zhang Mei-Ling,Han Yue-Lin,Jia Li-Qun. Chin. Phys. B, 2012, 21(5): 050201.
[5] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui,Zhang Bin,Zhang Wei-Wei,Xu Rui-Li. Chin. Phys. B, 2012, 21(5): 050202.
[6] A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints
Han Yue-Lin, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Chin. Phys. B, 2012, 21(12): 120201.
[7] Noether–Mei symmetry of discrete mechanico-electrical system
Zhang Wei-Wei, Fang Jian-Hui. Chin. Phys. B, 2012, 21(11): 110201.
[8] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling, Wang Xiao-Xiao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(10): 100203.
[9] Lie–Mei symmetry and conserved quantities of the Rosenberg problem
Liu Xiao-Wei, Li Yuan-Cheng. Chin. Phys. B, 2011, 20(7): 070204.
[10] Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system
Zhang Ke-Jun, Fang Jian-Hui, Li Yan. Chin. Phys. B, 2011, 20(5): 054501.
[11] A new type of conserved quantity of Mei symmetry for the motion of mechanico–electrical coupling dynamical systems
Zhao Li, Fu Jing-Li, Chen Ben-Yong. Chin. Phys. B, 2011, 20(4): 040201.
[12] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An, Li Zhuang-Jun, Luo Shao-Kai. Chin. Phys. B, 2011, 20(3): 030202.
[13] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang, Fu Jing-Li. Chin. Phys. B, 2011, 20(2): 021101.
[14] Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry
Luo Yi-Ping, Fu Jing-Li. Chin. Phys. B, 2011, 20(2): 021102.
[15] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Chin. Phys. B, 2011, 20(12): 124501.
No Suggested Reading articles found!