Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040201    DOI: 10.1088/1674-1056/20/4/040201
GENERAL   Next  

A new type of conserved quantity of Mei symmetry for the motion of mechanico–electrical coupling dynamical systems

Zhao Li(赵丽), Fu Jing-Li(傅景礼),and Chen Ben-Yong(陈本永)
Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico-electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.
Keywords:  new conserved quantity      Mei symmetry      mechanico--electrical coupling systems  
Received:  27 September 2010      Revised:  29 December 2010      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  02.30.Ks (Delay and functional equations)  
  04.50.+h  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072218).

Cite this article: 

Zhao Li(赵丽), Fu Jing-Li(傅景礼),and Chen Ben-Yong(陈本永) A new type of conserved quantity of Mei symmetry for the motion of mechanico–electrical coupling dynamical systems 2011 Chin. Phys. B 20 040201

[1] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[2] Lutzky M 1979 Phys. Lett. A 72 86
[3] Levi D and Winternitz P 2002 J. Phys. A: Math. Gen. 35 2249
[4] Olive P 1986 Applications of Lie Groups to Differential Equations (New York: Spriner)
[5] Cimpoiasu R and Constantinesu R 2007 Nonlinear Analysis 68 2261
[6] Fang J H 2010 Chin. Phys. B 19 040301
[7] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A: Math. Gen. 33 8507
[8] Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math. Phys. KI II 235
[9] Fang J H, Liao Y P, Ding L and Wang P 2006 Chin. Phys. 15 2792
[10] Fu J L, Chen B Y and Xie F P 2008 Chin. Phys. B 17 4354
[11] Zhang H B 2002 Chin. Phys. 11 1
[12] Lin P, Fang J H and Pang T 2008 Chin. Phys. B 17 4361
[13] Zhang Y 2006 Chin. Phys. 15 1935
[14] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[15] Chen X W, Liu C M and Li Y B 2006 Chin. Phys. 15 470
[16] Fu J L and Chen L Q 2004 Phys. Lett. A 331 138
[17] Fu J L, Chen L Q and Chen B Y 2010 Sci. Chin. Phys. Mech. & Astron. 53 1687
[18] Fu J L, Fu H and Liu R W 2010 Phys. Lett. A 374 1812
[19] Fu J L, Chen L Q, Jimenez S and Tang Y F 2006 Phys. Lett. A 358 5
[21] Fu J L, Chen B Y, Fu H, Zhao G L, Liu R W and Zhu Z Y 2010 it Sci. Chin. Phys. Mech. & Astron. 2010 53 1
[22] Li Y C, Xia L L, Zhao W, Hou Q B, Wang J and Jing H X 2007 it Acta Phys. Sin. 56 5037 (in Chinese)
[23] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[24] Liu H J, Fu J L and Tang Y F 2007 Chin. Phys. 16 559
[25] Zheng S W, Jia L Q and Yu H S 2006 Chin. Phys. 15 1399
[26] Fang J H, Ding N and Wang P 2007 Chin. Phys. 16 887
[27] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys. B 17 17
[28] Fang J H, Liu Y K and Zhang X N 2008 Chin. Phys. B 17 1962
[29] Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 0202
[1] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[2] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[3] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[4] Noether–Mei symmetry of discrete mechanico-electrical system
Zhang Wei-Wei (张伟伟), Fang Jian-Hui (方建会 ). Chin. Phys. B, 2012, 21(11): 110201.
[5] Lie–Mei symmetry and conserved quantities of the Rosenberg problem
Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成). Chin. Phys. B, 2011, 20(7): 070204.
[6] Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2011, 20(5): 054501.
[7] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An(姜文安), Li Zhuang-Jun(李状君), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(3): 030202.
[8] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang(施沈阳) and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2011, 20(2): 021101.
[9] Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry
Luo Yi-Ping(罗一平) and Fu Jin-Li(傅景礼). Chin. Phys. B, 2011, 20(2): 021102.
[10] Conformal invariance and conserved quantities of Appell systems under second-class Mei symmetry
Luo Yi-Ping(罗一平) and Fu Jing-Li(傅景礼). Chin. Phys. B, 2010, 19(9): 090304.
[11] A new type of conserved quantity of Lie symmetry for the Lagrange system
Fang Jian-Hui(方建会). Chin. Phys. B, 2010, 19(4): 040301.
[12] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇), Yang Xin-Fang(杨新芳), and Jia Li-Qun(贾利群). Chin. Phys. B, 2010, 19(3): 030304.
[13] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[14] Symmetry and conserved quantities of discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2010, 19(12): 124601.
[15] A type of new conserved quantity deduced from Mei symmetry for Appell equations in a holonomic system with unilateral constraints
Jia Li-Qun(贾利群), Xie Yin-Li(解银丽), Zhang Yao-Yu(张耀宇), and Yang Xin-Fang(杨新芳). Chin. Phys. B, 2010, 19(11): 110301.
No Suggested Reading articles found!