Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050201    DOI: 10.1088/1674-1056/21/5/050201
GENERAL   Next  

Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints

Wang Xiao-Xiao(王肖肖)a), Sun Xian-Ting(孙现亭)b), Zhang Mei-Ling(张美玲)a), Han Yue-Lin(韩月林)a), and Jia Li-Qun(贾利群)a)†
a. School of Science, Jiangnan University, Wuxi 214122, China;
b. School of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467002, China
Abstract  The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied. The differential equations of motion of the Appell equation for the system, the definition and the criterion of the Mei symmetry, and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.
Keywords:  non-Chetaev nonholonomic constrained system      dynamics of relative motion      Appell equation      Mei conserved quantity  
Received:  22 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032).

Cite this article: 

Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints 2012 Chin. Phys. B 21 050201

[1] Wu H B and Mei F X 2006 Acta Phys. Sin. 55 3825 (in Chinese)
[2] Li Y C, Zhang Y and Liang J H 2001 Acta Mechanica Solida Sinica 22 75
[3] Zhang Y and Mei F X 2004 Acta Phys. Sin. 53 661 (in Chinese)
[4] Ge W K 2002 Acta Phys. Sin. 51 1156 (in Chinese)
[5] Zhang Y and Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese)
[6] Fu J L, Nie N M and Huang J F 2009 Chin. Phys. B 18 2634
[7] Shang M and Mei F X 2007 Chin. Phys. B 16 3161
[8] Jiang W A and Luo S K 2011 Nonlinear Dyn. 67 475
[9] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[10] Li Z J, Jiang W A and Luo S K 2011 Nonlinear Dyn. 67 445
[11] Jiang W A, Li L, Li Z J and Luo S K 2012 Nonlinear Dyn. 67 1075
[12] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[13] Zhang Y 2007 Acta Phys. Sin. 56 3054 (in Chinese)
[14] Mei F X and Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese)
[15] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. B 15 470
[16] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[17] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. B 17 3170
[18] Cai J L 2009 Acta Physica Polonica A 115 854
[19] Wu H B, Xu X J, Wang S Y and Mei F X 2004 Journal of Beijing Institute of Technology 24 469 (in Chinese)
[20] Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese)
[21] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[22] Cai J L 2010 Acta Physica Polonica A 117 445
[23] Zheng S W, Xie J F and Chen X W 2010 Acta Phys. Sin. 59 5209 (in Chinese)
[24] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809
[25] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[26] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[27] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[28] Mei F X 2000 Journal of Beijing Institute of Technology 9 120 (in Chinese)
[29] Mei F X 1988 Analytical Mechanics Topics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[30] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[31] Mei F X 2001 Chin.Phys. 10 177
[32] Li R J, Qiao Y F and Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese)
[33] Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese)
[34] Luo S K and Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing:Science Press) (in Chinese)
[35] Jia L Q, Xie Y L and Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)
[36] Yang X F, Sun X T, Wang X X, Zhang M L and Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese)
[37] Li Y C, Xia L L, Wang X M and Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese)
[38] Jia L Q, Xie Y L, Zhang Y Y, Cui J C and Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese)
[1] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[2] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[3] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[4] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(10): 100203.
[5] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An(姜文安), Li Zhuang-Jun(李状君), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(3): 030202.
[6] Poisson theory and integration method for a dynamical system of relative motion
Zhang Yi(张毅) and Shang Mei(尚玫) . Chin. Phys. B, 2011, 20(2): 024501.
[7] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[8] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇), Yang Xin-Fang(杨新芳), and Jia Li-Qun(贾利群). Chin. Phys. B, 2010, 19(3): 030304.
[9] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[10] A type of new conserved quantity deduced from Mei symmetry for Appell equations in a holonomic system with unilateral constraints
Jia Li-Qun(贾利群), Xie Yin-Li(解银丽), Zhang Yao-Yu(张耀宇), and Yang Xin-Fang(杨新芳). Chin. Phys. B, 2010, 19(11): 110301.
[11] Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇) , and Jia Li-Qun(贾利群). Chin. Phys. B, 2009, 18(5): 1731-1736.
[12] Mei symmetry and Mei conserved quantity of nonholonomic systems with unilateral Chetaev type in Nielsen style
Jia Li-Qun(贾利群), Xie Jia-Fang(解加芳), and Luo Shao-Kai(罗绍凯) . Chin. Phys. B, 2008, 17(5): 1560-1564.
[13] Structure equation and Mei conserved quantity for Mei symmetry of Appell equation
Jia Li-Qun(贾利群), Xie Jia-Fang(解加芳), and Zheng Shi-Wang(郑世旺) . Chin. Phys. B, 2008, 17(1): 17-22.
[14] FORM INVARIANCE OF APPELL EQUATIONS
Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2001, 10(3): 177-180.
No Suggested Reading articles found!