Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 124501    DOI: 10.1088/1674-1056/20/12/124501
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint

Wang Xiao-Xiao(王肖肖)a), Sun Xian-Ting(孙现亭)b), Zhang Mei-Ling(张美玲)a),Xie Yin-Li(解银丽)a), and Jia Li-Qun(贾利群)a)
a School of Science, Jiangnan University, Wuxi 214122, China; b School of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467002, China
Abstract  The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
Keywords:  nonholonomic constraint of Chetaev's type      relative motion      Nielsen equation      Hojman conserved quantity  
Received:  30 May 2011      Revised:  10 June 2011      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  

Cite this article: 

Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint 2011 Chin. Phys. B 20 124501

[1] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press ) (in Chinese)
[2] Noether A E 1918 Nachr. Akad. Wiss. Göttingen Math. Phys. KI, II 235
[3] Djuki.cD S and Vujanovi.c B D 1975 Acta Mechanica 23 17
[4] Mei F X and Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese)
[5] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[6] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. 15 470
[7] Zhang Y 2007 Acta Phys. Sin. 56 3054 (in Chinese)
[8] Jia L Q, Cui J C, Zhang Y Y and Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese)
[9] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[10] Sen T and Tabor M 1990 Physcia D 44 313
[11] Barbara A S 1990 J. Math. Phys. 31 1627
[12] Shivamoggi B K and Muilenburg L 1991 Phys. Lett. A 154 24
[13] Zhao Y Y and Mei F X 1993 Adv. Mech. 23 360 (in Chinese)
[14] Zhao Y Y 1994 Acta Mech. Sin. 26 380 (in Chinese)
[15] Mei F X 1998 Chin. Sci. Bull. 43 1937
[16] Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese)
[17] Fu J L, Chen L Q, Bai J H and Yang X D 2003 Chin. Phys. 12 695
[18] Fang J H, Yan X H, Li H and Chen P S 2004 Commun. Theor. Phys. 42 19
[19] Ge W K and Zhang Y 2005 Acta Phys. Sin. 54 4985 (in Chinese)
[20] Zheng S W and Jia L Q 2007 Acta Phys. Sin. 56 661 (in Chinese)
[21] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[22] Fang J H 2010 Chin. Phys. B 19 040301
[23] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[24] Li Y C, Xia L L, Wang X M and Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese)
[25] Xie Y L, Jia L Q and Luo S K 2011 Chin. Phys. B 20 010203
[26] Zhang Y 2011 Chin. Phys. B 20 034502
[27] Li Y, Fang J H and Zhang K J Chin. Phys. B 20 030201
[28] Hojman S A 1992 J. Phys. A: Math. Gen. 25 L291
[1] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[2] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[3] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[4] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
[5] A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints
Han Yue-Lin (韩月林), Sun Xian-Ting (孙现亭), Wang Xiao-Xiao (王肖肖), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(12): 120201.
[6] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(10): 100203.
[7] Conformal invariance and a kind of Hojman conserved quantity of the Nambu system
Li Yan(李燕),Fang Jian-Hui(方建会),and Zhang Ke-Jun(张克军). Chin. Phys. B, 2011, 20(3): 030201.
[8] Poisson theory and integration method for a dynamical system of relative motion
Zhang Yi(张毅) and Shang Mei(尚玫) . Chin. Phys. B, 2011, 20(2): 024501.
[9] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[10] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[11] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[12] Conformal invariance and conserved quantities of dynamical system of relative motion
Chen Xiang-Wei(陈向炜), Zhao Yong-Hong(赵永红), and Li Yan-Min(李彦敏). Chin. Phys. B, 2009, 18(8): 3139-3144.
[13] Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇) , and Jia Li-Qun(贾利群). Chin. Phys. B, 2009, 18(5): 1731-1736.
[14] Hojman conserved quantity deduced by weak Noether symmetry for Lagrange systems
Xie Jia-Fang(解加芳), Gang Tie-Qiang(冮铁强), and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2008, 17(2): 390-393.
[15] Lie symmetry and Hojman conserved quantity of Nambu system
Lin Peng (蔺鹏), Fang Jian-Hui (方建会), Pang Ting (庞婷). Chin. Phys. B, 2008, 17(12): 4361-4364.
No Suggested Reading articles found!