Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120201    DOI: 10.1088/1674-1056/21/12/120201
GENERAL Prev   Next  

A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints

Han Yue-Lin (韩月林)a, Sun Xian-Ting (孙现亭)b, Wang Xiao-Xiao (王肖肖)a, Zhang Mei-Ling (张美玲)a, Jia Li-Qun (贾利群)a
a School of Science, Jiangnan University, Wuxi 214122, China;
b School of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467002, China
Abstract  A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints are investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.
Keywords:  holonomic system with unilateral constraints      Nielsen equation      structural equation      new type of conserved quantity  
Received:  01 March 2012      Revised:  12 May 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032) and the Scientific Research and Innovation Plan for Colleage Graduates of Jiangsu Province of China (Grant No. CSLX12_0720).
Corresponding Authors:  Jia Li-Qun     E-mail:  jlq0000@163.com

Cite this article: 

Han Yue-Lin (韩月林), Sun Xian-Ting (孙现亭), Wang Xiao-Xiao (王肖肖), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群) A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints 2012 Chin. Phys. B 21 120201

[1] Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl 235
[2] Vujanović B 1978 Int. J. Nonlinear Mech. 13 185
[3] Lutzky M 1979 J. Phys. A 12 973
[4] Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties (Beijing: Beijing Polytechnic University Press)
[5] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)
[6] Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese)
[7] Li Z J, Jiang W A and Luo S K 2012 Nonlinear Dyn. 67 445
[8] Mei F X 2000 J. Beijing Inst. Tech. 9 120
[9] Luo S K and Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press)
[10] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)
[11] Zheng S W, Tang Y F and Fu J L 2006 Chin. Phys. 15 243
[12] Zhang M J, Fang J H, Zhang X N and Lu K 2008 Chin. Phys. B 17 1957
[13] Fang J H, Liu Y K and Zhang X N 2008 Chin. Phys. B 17 1962
[14] Cai J L 2009 Acta Phys. Pol. A 115 854
[15] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[16] Cui J C, Jia L Q and Yang X F 2009 J. Henan Normal University (Natural Science) 37 70 (in Chinese)
[17] Cai J L 2010 Chin. J. Phys. 48 728
[18] Cai J L 2010 Acta Phys. Pol. A 117 445
[19] Jia L Q, Zhang Y Y, Yang X F, Cui J C and Xie Y L 2010 Acta Phys. Sin. 59 2939 (in Chinese)
[20] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[21] Jiang W A, Li L, Li Z J and Luo S K 2012 Nonlinear Dyn. 67 1075
[22] Jiang W A and Luo S K 2012 Nonlinear Dyn. 67 475
[23] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[24] Zhang J, Fang J H and Chen P S 2005 Acta Armamentarii 26 228
[25] Cui J C, Zhang Y Y and Jia L Q 2009 Chin. Phys. B 18 1731
[26] Cui J C, Jia L Q and Zhang Y Y 2009 Commun. Theor. Phys. 52 7
[27] Li Y C, Wang X M and Xia L L 2010 Acta Phys. Sin. 59 2935 (in Chinese)
[28] Jia L Q, Sun X T, Zhang M L, Wang X X and Xie Y L 2011 Acta Phys. Sin. 60 084501 (in Chinese)
[29] Wang X X, Sun X T, Zhang M L, Xie Y L and Jia L Q 2012 Acta Phys. Sin. 61 064501 (in Chinese)
[30] Zhang Y 2004 Acta Phys. Sin. 53 331 (in Chinese)
[31] Zhang Y 2005 Acta Phys. Sin. 54 4488 (in Chinese)
[32] Zhang Y 2006 Acta Phys. Sin. 55 504 (in Chinese)
[33] Li H and Fang J H 2004 Acta Phys. Sin. 53 2807 (in Chinese)
[34] Jing H X, Li Y C and Xia L L 2007 Acta Phys. Sin. 56 3043 (in Chinese)
[1] Impact of user influence on information multi-step communication in micro-blog
Wu Yue (吴越), Hu Yong (胡勇), He Xiao-Hai (何小海), Deng Ken (邓垦). Chin. Phys. B, 2014, 23(6): 060101.
[2] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[3] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(12): 124501.
[4] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[5] Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇) , and Jia Li-Qun(贾利群). Chin. Phys. B, 2009, 18(5): 1731-1736.
[6] A new type of conserved quantity of Mei symmetry for relativistic nonholonomic mechanical system in phase space
Zhang Xiao-Ni(张小妮), Fang Jian-Hui(方建会),Pang Ting(庞婷), and Lin Peng(蔺鹏) . Chin. Phys. B, 2008, 17(2): 394-398.
[7] Form invariance and conserved quantities of Nielsen equations of relativistic variable mass nonholonomic systems
Qiao Yong-Fen (乔永芬), Zhao Shu-Hong (赵淑红), Li Ren-Jie (李仁杰). Chin. Phys. B, 2004, 13(3): 292-296.
[8] ON THE FORM INVARIANCE OF NIELSEN EQUATIONS
Wang Shu-yong (王树勇), Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2001, 10(5): 373-375.
No Suggested Reading articles found!