Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110201    DOI: 10.1088/1674-1056/21/11/110201
GENERAL   Next  

Noether–Mei symmetry of discrete mechanico-electrical system

Zhang Wei-Wei (张伟伟), Fang Jian-Hui (方建会 )
College of Science, China University of Petroleum, Qingdao 266580, China
Abstract  Noether-Mei symmetry of discrete mechanico-electrical system on a regular lattice is investigated. Firstly, the Noether symmetry of discrete mechanico-electrical system is reviewed, and the motion equations and energy equations are derived. Secondly, the definition of Noether-Mei symmetry for the system is presented, and the criterion is derived. Thirdly, conserved quantities induced by Noether-Mei symmetry with their existence conditions are obtained. Finally, an example is discussed to illustrate the results.
Keywords:  discrete mechanico-electrical system      Noether-Mei symmetry      conserved quantity  
Received:  05 January 2012      Revised:  18 June 2012      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2011AM012).
Corresponding Authors:  Fang Jian-Hui     E-mail:  fangjh@upc.edu.cn

Cite this article: 

Zhang Wei-Wei (张伟伟), Fang Jian-Hui (方建会 ) Noether–Mei symmetry of discrete mechanico-electrical system 2012 Chin. Phys. B 21 110201

[1] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[2] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[3] Mei F X 2000 J. Beijing Institute Tech. 9 120
[4] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[5] Fu J L, Chen LQ, Jimnez S and Tang Y F 2006 Phys. Lett. A 358 5
[6] Hydon P E 2000 Proc. R. Soc. A 456 2835
[7] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A: Math. Gen. 33 8507
[8] Levi D and Winternitz P 2006 J. Phys. A: Math. Gen. 39 R1
[9] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[10] McLachlan R and Perlmutter M 2006 J. Nonlinear Sci. 16 283
[11] Zhang Y 2007 Acta Phys. Sin. 56 1855 (in Chinese)
[12] Fu J L, Dai G D, Salvaolor J and Tang Y F 2007 Chin. Phys. 16 570
[13] Shi S Y, Fu J L and Chen L Q 2007 Acta Phys. Sin. 56 3060 (in Chinese)
[14] Dorodnitsyn V 1991 J. Sov. Math. 55 1490
[15] Dorodnitsyn V 2001 Appl. Numer. Math. 39 307
[16] Dorodnitsyn V 2004 J. Math. Phys. 45 336
[17] Dorodnitsyn V 2010 J. Eng. Math. 66 253
[18] Fu J L, Chen B Y and Xie F P 2008 Chin. Phys. B 17 4354
[19] Fu J L, Chen B Y and Chen L Q 2009 Phys. Lett. A 373 409
[20] Fu J L, Fu H and Liu R W 2010 Phys. Lett. A 374 1812
[21] Fu J L, Chen L Q and Chen B Y 2010 Sci. China-Phys. Mech. Astron. 53 545
[22] Fu J L, Chen L Q and Chen B Y 2010 Sci. China-Phys. Mech. Astron. 53 1687
[23] Wang P 2011 Chin. Phys. Lett. 28 040203
[24] Mei F X 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[3] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[4] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[5] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[6] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[7] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[8] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[9] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[10] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[11] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[12] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[13] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[14] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
[15] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
No Suggested Reading articles found!