Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(3): 812-816    DOI: 10.1088/1674-1056/17/3/013
GENERAL Prev   Next  

Formation of three-body entanglement via a vacuum optical cavity induction in Tavis--Cummings model

Li Yu-Liang(李玉良) and Li Xue-Mei(李雪梅)
Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
Abstract  After briefly introducing Akhtarshenas, concurrence vector and subvector for describing many-body entanglement, we investigate the entanglement formation for a system which contains three bodies, i.e. two identical atoms and a single-model cavity field, in the Tavis--Cummings model by calculating the concurrences. The results show that the coupling strength between two atoms, the decay cavity and the atomic spontaneous emission can change the entanglement of formation according to different modes: these factors destroy periodicity and symmetry of all concurrences, and that the coupling strength of two atoms does not change the peak value of concurrence (C), but the strength of decay cavity and the atomic spontaneous emission decline in the peak value of concurrence (C) and the latter is more serious than the former under the same strengths. The concurrence vector and subvector are a useful measure of entanglement for a pure state of the many-body system, in that it can give novel pictures about the entanglements for the entire system and between its inner bodies.
Keywords:  quantum three-body entanglement      concurrence vector      cavity QED  
Received:  11 October 2007      Revised:  01 January 2008      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  

Cite this article: 

Li Yu-Liang(李玉良) and Li Xue-Mei(李雪梅) Formation of three-body entanglement via a vacuum optical cavity induction in Tavis--Cummings model 2008 Chin. Phys. B 17 812

[1] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[2] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[3] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[4] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[5] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[6] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[7] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[8] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[9] Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED
Wu Xi(吴熙), Chen Zhi-Hua(陈志华), Zhang Yong(张勇), Chen Yue-Hua(陈悦华), Ye Ming-Yong(叶明勇), and Lin Xiu-Min(林秀敏). Chin. Phys. B, 2011, 20(6): 060306.
[10] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao(张英俏), Zhang Shou(张寿), Yeon Kyu-Hwang, and Yu Seong-Cho . Chin. Phys. B, 2011, 20(12): 120310.
[11] Scheme to implement optimal asymmetric economical 1→3 phase-covariant telecloning via cavity QED
Song Qing-Min(宋庆敏) and Ye Liu(叶柳). Chin. Phys. B, 2010, 19(8): 080309.
[12] Tunable thermal entanglement in an effective spin-star system using coupled microcavities
Yang Wan-Li(杨万里), Wei Hua(魏华), Feng Mang(冯芒), and An Jun-Hong(安钧鸿). Chin. Phys. B, 2009, 18(9): 3677-3686.
[13] Entanglement and coherence of a three-level atom in $\Lambda$ configuration interacting with two fields
Zhang Jian-Song(张建松) and Xu Jing-Bo(许晶波). Chin. Phys. B, 2009, 18(6): 2288-2293.
[14] Quantum superdense coding via cavity-assisted interactions
Pan Guo-Zhu(潘国柱), Yang Ming(杨名), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2009, 18(6): 2319-2323.
[15] Scheme for implementing quantum logic gates for two atoms trapped in different cavities
Lin Li-Hua(林丽华). Chin. Phys. B, 2009, 18(5): 1867-1871.
No Suggested Reading articles found!