Please wait a minute...
Chin. Phys., 2007, Vol. 16(7): 1908-1911    DOI: 10.1088/1009-1963/16/7/017
GENERAL Prev   Next  

The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST

Mo Jia-Qia, Lin Wan-Taoa, Lin Yi-Huab
a Anhui Normal University, Wuhu 241000, China;Division of Computational Science, E-Institutes of Shanghai Universities at SJTU, Shanghai, 200240, China;Huzhou Teachers College, Huzhou 313000, China; b LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  In this paper a time delay equation for sea--air oscillator model is studied. The aim is to create an approximate solving method of nonlinear equation for sea--air oscillator model. Employing the method of variational iteration, it obtains the approximate solution of corresponding equation. This method is an approximate analytic method, which can be often used for analysing other behaviour of the sea surface temperature anomaly of the atmosphere--ocean oscillator model.
Keywords:  El Ni\~{n}o-Southern Oscillator      variational iteration      nonlinear      time delay      approximate solution.  
Received:  07 October 2006      Revised:  17 November 2006      Published:  04 July 2007
PACS:  92.05.Bc (Analytical modeling and laboratory experiments)  
  92.05.Df (Climate and inter-annual variability)  
  92.05.Hj (Physical and chemical properties of seawater)  
  92.10.Hm (Ocean waves and oscillations)  
  92.60.Cc (Ocean/atmosphere interactions, air/sea constituent fluxes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 40676016, 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation

Cite this article: 

Mo Jia-Qi, Lin Wan-Tao, Lin Yi-Hua The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST 2007 Chin. Phys. 16 1908

[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[3] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[4] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[5] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[6] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[7] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[8] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[9] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[10] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[11] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[12] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[13] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[14] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[15] Lax pair and vector semi-rational nonautonomous rogue waves fora coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
No Suggested Reading articles found!