Please wait a minute...
Chin. Phys., 2006, Vol. 15(3): 580-584    DOI: 10.1088/1009-1963/15/3/023
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The characteristics of confined ablation in laser propulsion

Zheng Zhi-Yuana, Zhang Jiea, Hao Zuo-Qianga, Zhang Zhea, Lu Xina, Wang Zhao-Huaa, Wei Zhi-Yia, Yuan Xiao-Huib
a Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China; b Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;State Key Laboratory of Transient Optics Technology, Chinese Academy of Sciences, Xi'an 710068, China
Abstract  Compared with direct ablation, confined ablation provides an effective way to obtain a large target momentum and a high coupling coefficient. By using a transparent glass layer to cover the target surface, the coupling coefficient is enhanced by an order of magnitude. With the increase of the gap width between the target surface and the cover layer, the coupling coefficient exponentially decreases. It is found that the coupling coefficient is also related to the thickness of the cover layer.
Keywords:  laser plasma      propulsion      confinement ablation     
Received:  06 April 2005      Published:  20 March 2006
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.38.Mf (Laser ablation)  
  52.25.-b (Plasma properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10374116 and 60321003) and the National High Technology Inertial Confinement Fusion Foundation of China.

Cite this article: 

Zheng Zhi-Yuan, Zhang Jie, Hao Zuo-Qiang, Yuan Xiao-Hui, Zhang Zhe, Lu Xin, Wang Zhao-Hua, Wei Zhi-Yi The characteristics of confined ablation in laser propulsion 2006 Chin. Phys. 15 580

[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban, Q Wang, Z J Liu, C Y Zheng, X T He. Chin. Phys. B, 2020, 29(9): 095202.
[2] Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target
Xue-Ren Hong, Wei-Jun Zhou, Bai-Song Xie, Yang Yang, Li Wang, Jian-Min Tian, Rong-An Tang, Wen-Shan Duan. Chin. Phys. B, 2017, 26(6): 065203.
[3] Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
Zhi-Yuan Zheng, Si-Qi Zhang, Tian Liang, Jing Qi, Wei-Chong Tang, Ke Xiao, Lu Gao, Hua Gao, Zi-Li Zhang. Chin. Phys. B, 2017, 26(3): 035203.
[4] Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera
Wei Hong, Xian-Lun Wen, Lai Wei, Bin Zhu, Yu-Chi Wu, Ke-Gong Dong, Chun-Ye Jiao, Bo Wu, Ying-Ling He, Fa-Qiang Zhang, Wei-Min Zhou, Yu-Qiu Gu. Chin. Phys. B, 2017, 26(2): 025204.
[5] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen, Min Chen, Guo-Bo Zhang, Ji Luo, Su-Ming Weng, Xiao-Hui Yuan, Feng Liu, Zheng-Ming Sheng. Chin. Phys. B, 2017, 26(11): 115204.
[6] Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion
Zhi-Yuan Zheng, Si-Qi Zhang, Tian Liang, Lu Gao, Hua Gao, Zi-Li Zhang. Chin. Phys. B, 2016, 25(4): 045204.
[7] Filamentation instability in two counter-streaming laser plasmas
Hui Liu, Quan-Li Dong, Da-Wei Yuan, Xun Liu, Neng Hua, Zhan-Feng Qiao, Bao-Qiang Zhu, Jian-Qiang Zhu, Bo-Bin Jiang, Kai Du, Yong-Jian Tang, Gang Zhao, Xiao-Hui Yuan, Zheng-Ming Sheng, Jie Zhang. Chin. Phys. B, 2016, 25(12): 125201.
[8] High-order optical vortex harmonics generated by relativistic femtosecond laser pulse
Han Yu-Jing, Liao Guo-Qian, Chen Li-Ming, Li Yu-Tong, Wang Wei-Min, Zhang Jie. Chin. Phys. B, 2015, 24(6): 065202.
[9] Production of intense attosecond vector beam pulse trains based on harmonics
Han Yu-Jing, Liao Guo-Qian, Chen Li-Ming, Li Yu-Tong, Wang Wei-Min, Zhang Jie. Chin. Phys. B, 2015, 24(11): 115203.
[10] Polarization characteristics of single shot nanosecond laser induced breakdown spectroscopy of Al
Liu Jia, Tao Hai-Yan, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan. Chin. Phys. B, 2013, 22(4): 044206.
[11] Laser propulsion with a high specific impulse using a thin film propellant
Zhang Yi, Lu Xin, Zhou Mu-Lin, Lin Xiao-Xuan, Zheng Zhi-Yuan, Li Yu-Tong, Zhang Jie. Chin. Phys. B, 2011, 20(8): 087901.
[12] Scattering of light waves by electron electrostatic waves in laser produced plasmas
Liu Zhan-Jun, Xiang Jiang, Zheng Chun-Yang, Zhu Shao-Ping, Cao Li-Hua, He Xian-Tu, Wang Yu-Gang. Chin. Phys. B, 2010, 19(7): 075201.
[13] Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype
Li Zhi-Chao, Zheng Jian, Ding Yong-Kun, Yin Qiang, Jiang Xiao-Hua, Li San-Wei, Guo Liang, Yang Dong, Wang Zhe-Bin, Zhang Huan, Liu Yong-Gang, Zhan Xia-Yu, Tang Qi. Chin. Phys. B, 2010, 19(12): 125202.
[14] 2D parameter optimization of Ne-like Cr x-ray laser on slab
Cheng Tao, Li Ying-Jun, Meng Li-Min, Yuan Su-Ying, Zhang Jie. Chin. Phys. B, 2009, 18(1): 203-208.
[15] Numerical study of the Ne-like Cr x-ray laser at 28.6nm
Zhao Jing, Dong Quan-Li, Wang Shou-Jun, Zhang Lei, Zhang Jie. Chin. Phys. B, 2008, 17(7): 2517-2521.
No Suggested Reading articles found!