Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 115201    DOI: 10.1088/1674-1056/ab9f2a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Investigation on plasma structure evolution and discharge characteristics of a single-stage planar-pulsed-inductive accelerator under ambient fill condition

Xiao-Kang Li(李小康), Bi-Xuan Che(车碧轩), Mou-Sen Cheng(程谋森), Da-Wei Guo(郭大伟), Mo-Ge Wang(王墨戈), and Yun-Tian Yang(杨云天)
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  

The physical process of a single-stage planar-pulsed-inductive accelerator is investigated. Measurements include the waveforms of circuit current, capacitor voltage, plasma radiation intensity, and temporal plasma structure photos captured by a high-speed camera. Experiments are conducted under static ambient fill condition using argon as propellant. Varied values of capacitor voltage and gas pressure are compared. Further discussions quantify the EM interaction between circuit and plasma, as well as their energy deposition and current sheet acceleration. Based on the results of experiments, physical mechanisms of the initial ionization phase and the following acceleration phase are analyzed theoretically.

Keywords:  electric propulsion      pulsed-inductive thruster      discharge characteristics      plasma structure  
Received:  15 May 2020      Revised:  09 June 2020      Accepted manuscript online:  23 June 2020
Fund: the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3592).
Corresponding Authors:  Corresponding author. E-mail: chebixuan@outlook.com   

Cite this article: 

Xiao-Kang Li(李小康), Bi-Xuan Che(车碧轩), Mou-Sen Cheng(程谋森), Da-Wei Guo(郭大伟), Mo-Ge Wang(王墨戈), and Yun-Tian Yang(杨云天) Investigation on plasma structure evolution and discharge characteristics of a single-stage planar-pulsed-inductive accelerator under ambient fill condition 2020 Chin. Phys. B 29 115201

Fig. 1.  

Schematic diagram of experiment setups.

Fig. 2.  

Configuration of drive-coil.

Fig. 3.  

Arrange of capacitors.

Fig. 4.  

Circuit schematic diagram of pulse-forming network (PFN).

Drive-coil inductance Total capacitance Parasitic resistance Parasitic inductance
LC/nH C/μF R0/mΩ L0/nH
378 8 13 123
Table 1.  

Circuit parameters of pulse-forming network.

Fig. 5.  

Long exposure photograph of the discharge process.

Fig. 6.  

Representative frames of high speed photographing.

Fig. 7.  

Capacitor voltage V.

Fig. 8.  

Circuit current IC.

Fig. 9.  

Plasma radiation intensity UR.

Fig. 10.  

Lumped elementary circuit model of a pulsed-inductive accelerator.

Fig. 11.  

Comparisons of derived parameters: (a) exhausting speed vt, (b) Lovberg ratio L*, (c) energy deposition ratio ε.

Fig. 12.  

Comparison of initial gas ionization mode: (a) a compact current sheet leads to snowplow ionization mode; (b) a loosen current sheet leads to diffusive ionization mode.

Fig. 13.  

Comparisons of current sheet acceleration state: (a) current sheet still resorts near drive-coil when the circuit current has already inversed; (b) current sheet has already decoupled with drive-coil before the circuit current peaks; (c) current sheet just decouples with drive-coil when circuit current inverses.

[1]
Bathgate S N, Bilek M M M, Mckenzie D R 2017 Plasma Sci. Technol. 19 083001 DOI: 10.1088/2058-6272/aa71fe
[2]
Robert H F, Ioannis G M 2005 41st AIAA/ASME/SAE/ASEE Joint Conference and Exhibit July 10–13, 2005 Tucson, Arizona, USA AIAA 2005–3892
[3]
Polzin K A 2011 J. Propul. Power 27 513 DOI: 10.2514/1.B34188
[4]
Dailey C L, Lovberg R H 1993 NASA Contractor Report Lewis Research Centre, NASA 1-19291
[5]
Russell D, Poylio J H, Goldstein W, Bernard J, Lovberg R H, Dailey C L 2004 Space 2004 Conference and Exhibit September 28–30, 2004 San Diego, California, USA AIAA 2004-6054
[6]
Choueiri E Y, Polzin K A 2006 J. Propul. Power 22 611 DOI: 10.2514/1.16399
[7]
Martin A K, Dominguez A, Eskridge R H, Polzin K A, Riley D P 2015 34th International Electric Propulsion Conference July 4–10, 2015 Hyogo-Kobe, Japan IEPC 2015-50
[8]
Polzin K A 2008 IEEE Trans. Plasma Sci. 36 2189 DOI: 10.1109/TPS.2008.2003537
[9]
Dailey C L, Lovberg R H 1972 AIAA J. 10 125 DOI: 10.2514/3.50076
[10]
Dailey C L, Lovberg R H 1982 AIAA J. 20 971 DOI: 10.2514/3.51155
[11]
Lovberg R, Dailey C 1989 AIAAASMESAEASEE 25th Joint Propulsion Conference July 10–12, 1989 Monterey CA USA AIAA 89 2266
[12]
Martin A K, Eskridge R 2005 J. Phys. D: Appl. Phys. 38 4168
[13]
Polzin K A, Sankaran K 2013 J. Phys. D: Appl. Phys. 46 5201
[14]
Mikellides P G, Neilly C 2007 J. Propul. Power 23 51 DOI: 10.2514/1.22396
[15]
Che B X, Li X K, Cheng M S, Guo D W, Yang X 2018 Acta Phys. Sin. 67 015201 in Chinese DOI: 10.7498/aps.66.015201
[16]
Che B X, Cheng M S, Li X K, Guo D W 2018 J. Phys. D: Appl. Phys. 51 365202 DOI: 10.1088/1361-6463/aad47f
[17]
Guo D W, Cheng M S, Li X K 2017 Re. Sci. Instrum. 88 105101
[18]
Yang Z, Song H M, Wang H Y, Guo S G, Jia M, Wang K 2019 Chin. Phys. B. 28 024701 DOI: 10.1088/1674-1056/28/2/024701
[19]
Cheng J L, Yao X L, Sun W 2008 Pulsed Current Technology Xi’an Jiaotong University Press 3 6 in Chinese
[20]
Lovberg R H, Hayworth B R, Gooding T 1962 Technical Report Convair/General Dynamics San Diego, CA, USA AE62-0678
[21]
Wu Z C, Zhang X J, Hu Y Z 2012 Gas Discharge National Defense Industry Press 66 67 in Chinese
[22]
Guo Q J, Ni G H, Li L, Lin Q F, Zhao Y J, Sui S Y, Xie H B, Duan W X, Meng Y D 2018 Chin. Phys. Lett. 35 075202 DOI: 10.1088/0256-307X/35/7/075202
[23]
Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 945 DOI: 10.1109/TPS.2006.875732
[24]
Ji Y L, Zhou B M, Huang Y D 2018 Chin. Phys. Lett. 35 055203 DOI: 10.1088/0256-307X/35/5/055203
[1] Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process
Qingming Liu(刘庆明), Jinxiang Huang(黄金香), Huige Shao(邵惠阁), Yunming Zhang(张云明). Chin. Phys. B, 2017, 26(10): 105202.
No Suggested Reading articles found!