Please wait a minute...
Chinese Physics, 2005, Vol. 14(8): 1507-1511    DOI: 10.1088/1009-1963/14/8/005
GENERAL Prev   Next  

Effect of noise on trace distance of remote state preparation

Chen Ai-Xi (陈爱喜)ab, Li Jia-Hua (李家华)c
a Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, Chinab Graduate School, Chinese Academy of Sciences, Wuhan 430071, China; c Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The influence of noise on the remote preparation of a qubit by an entangled pair is investigated. In Bloch sphere representation, we use the trace distance to describe how close the final state is to the original state to be prepared. Our studies include two cases. Firstly, we consider the sender and the receiver sharing a mixture of two Bell states as quantum channel in remote state preparation (RSP), and calculate the trace distance as a function of mixture ratio and angle of a state to be prepared. Secondly, the system--environment interaction is taken into account by including stochastic fluctuating terms in the system Hamiltonian. Solving the Bloch equations, we obtain the evolution density matrix of the system. We then apply this stochastic model to study the effect of noise on the trace distance of RSP.
Keywords:  remote state preparation      trace distance      density matrix   
Received:  06 January 2005      Revised:  14 March 2005      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  02.50.Ey (Stochastic processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 90103026 and 60478029).

Cite this article: 

Chen Ai-Xi (陈爱喜), Li Jia-Hua (李家华) Effect of noise on trace distance of remote state preparation 2005 Chinese Physics 14 1507

[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[3] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[4] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[5] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[6] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[7] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[8] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[9] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[10] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[11] Effect of residual Doppler averaging on the probe absorption in cascade type system: A comparative study
Suman Mondal, Arindam Ghosh, Khairul Islam, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2018, 27(9): 094204.
[12] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[13] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[14] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[15] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
No Suggested Reading articles found!