Please wait a minute...
Chinese Physics, 2005, Vol. 14(5): 879-881    DOI: 10.1088/1009-1963/14/5/003
GENERAL Prev   Next  

The third-order Lagrange equation for mechanical systems of variable mass

Ma Shan-Jun (马善钧), Ge Wei-Guo (葛卫国), Huang Pei-Tian (黄沛天)
College of Physics and Communication Electronics,Jiangxi Normal University, Nanchang 330027,China
Abstract  In this paper, based on the third-order D’Alember-Lagrange principle for mechanical systems of variable mass, the third-order Lagrange’s equations of mechanical systems of variable mass have been obtained. From the equations the motion of mechanical systems of variable mass can be studied. In addition, the equations may enrich the theory of third-order differential equation.
Keywords:  mechanical system of variable mass      third-order D’Alember-Lagrange’s principle      time rate of force      third-order Lagrange’s equations  
Received:  25 September 2004      Revised:  02 January 2005      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.30.Jr (Partial differential equations)  

Cite this article: 

Ma Shan-Jun (马善钧), Ge Wei-Guo (葛卫国), Huang Pei-Tian (黄沛天) The third-order Lagrange equation for mechanical systems of variable mass 2005 Chinese Physics 14 879

[1] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[2] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[3] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[4] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[5] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[6] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[7] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[8] Methods of reduction for Lagrange systems on time scaleswith nabla derivatives
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(1): 014501.
[9] Stability analysis of a simple rheonomic nonholonomic constrained system
Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔). Chin. Phys. B, 2016, 25(12): 124501.
[10] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[11] An application of a combined gradient system to stabilize a mechanical system
Xiang-Wei Chen(陈向炜), Ye Zhang(张晔), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(10): 100201.
[12] Two kinds of generalized gradient representationsfor holonomic mechanical systems
Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬). Chin. Phys. B, 2016, 25(1): 014502.
[13] Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
Xin-Lei Kong(孔新雷), Hui-Bin Wu(吴惠彬), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(1): 010203.
[14] Dynamics of two polarized nanoparticles
Duan Xiao-Yong (段晓勇), Wang Zhi-Guo (王治国). Chin. Phys. B, 2015, 24(11): 118106.
[15] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
No Suggested Reading articles found!