Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1995, Vol. 4(8): 561-568    DOI: 10.1088/1004-423X/4/8/001
GENERAL   Next  

PHASE TRANSITION PROPERTY OF THE BOSONIZED HUBBARD MODEL

DING GUO-HUI (丁国辉), XU BO-WEI (许伯威)
Department of Physics, Shanghai Jiaotong University, Shanghai 200030, China
Abstract  Using the bosonization method of one-dimensional fermion system, we discussed the bosonized Hamiltonian of the half-filling Hubbard model, and investigated the ground state and phase transition properties with the gaussian effective potential method of sine-Gordon field.
Received:  11 October 1994      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China.

Cite this article: 

DING GUO-HUI (丁国辉), XU BO-WEI (许伯威) PHASE TRANSITION PROPERTY OF THE BOSONIZED HUBBARD MODEL 1995 Acta Physica Sinica (Overseas Edition) 4 561

[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[4] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[5] Floquet topological phase transition in two-dimensional quadratic band crossing system
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏). Chin. Phys. B, 2021, 30(6): 067304.
[6] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[7] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[8] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[9] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[10] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[11] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[12] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[13] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[14] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[15] Topological hierarchy matters–topological matters with superlattices of defects
Jing He(何敬), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2016, 25(11): 117310.
No Suggested Reading articles found!