Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014208    DOI: 10.1088/1674-1056/ade4b5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Chaotic dynamics of Pr3+/Yb3+-doped all-fiber up-conversion visible fiber laser

Yisong Li(李义松)1,†, Yueling Hao(郝悦伶)1,†, Juanfen Wang(王娟芬)1, Xiaohui Chen(陈晓晖)1, Shengxiang Chen(陈胜祥)1, Chao Zhou(周超)1, Lingzhen Yang(杨玲珍)1,2,‡
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  We investigate theoretically and experimentally the chaotic dynamics of visible-wavelength all-fiber ring laser. The 100-m 630 HP fibers are used to ensure high non-linearity. A 4-m Pr$^{3+}$/Yb$^{3+}$-co-doped ZBLAN fiber provides the gain. The chaotic laser was pumped by the laser diodes with the maximum power of 150 mW at the wavelength of 850 nm. The peak fluorescence spectrum of Pr$^{3+}$/Yb$^{3+}$-co-doped ZBLAN fiber at the wavelength of 635 nm shows that the visible-wavelength fiber laser can be achieved by synergistic energy transfer between Pr$^{3+}$ and Yb$^{3+}$ ions. The chaotic fiber laser is generated by adjusting the pump power, polarization controller and the auto-correlation, permutation entropy, skewness, and kurtosis were used to analyze the characteristics of chaotic laser. The noise-like time series and delta-like auto-correlation curve indicate the chaotic output. The complexity and randomness of time series are analyzed by the permutation entropy, skewness, and kurtosis. The result shows that chaotic dynamics is stable when the pump power exceeds a certain value. The visible chaotic all-fiber laser has high stability and can be applied for real-time monitoring and sensing. We believe that this approach may also be feasible for other materials for emission in the visible range.
Keywords:  chaotic lasers      visible fiber laser      randomness      Pr3+/Yb3+ doped fiber  
Received:  19 April 2025      Revised:  07 June 2025      Accepted manuscript online:  16 June 2025
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.60.-v (Laser optical systems: design and operation)  
  42.55.Wd (Fiber lasers)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975141, 61575137, and 61675144).
Corresponding Authors:  Lingzhen Yang     E-mail:  office-science@tyut.edu.cn

Cite this article: 

Yisong Li(李义松), Yueling Hao(郝悦伶), Juanfen Wang(王娟芬), Xiaohui Chen(陈晓晖), Shengxiang Chen(陈胜祥), Chao Zhou(周超), Lingzhen Yang(杨玲珍) Chaotic dynamics of Pr3+/Yb3+-doped all-fiber up-conversion visible fiber laser 2026 Chin. Phys. B 35 014208

[1] Sakuraba R, Iwakawa K, Kanno K and Uchida A 2015 Opt. Express 23 1470
[2] Bouchez G, Malica T, Wolfersberger D and Sciamanna M 2021 Phys. Rev. E 103 042207
[3] Li J, Yang L Z, Ding W J, Zhan M X, Fan L L, Wang J F, Shang H F and Ti G 2021 Appl. Opt. 60 4004
[4] Zhang M and Wang Y 2021 J. Lightwave Technol. 39 3711
[5] Wang L, Mao X, Wang A, Wang Y, Gao Z, Li S and Yan L 2020 Opt. Lett. 45 4762
[6] Annovazzi-Lodi V, Benedetti M, Merlo S, Perez T, Colet P and Mirasso C R 2007 IEEE Photon. Technol. Lett. 19 76
[7] Li X Z, Li S S and Chan S C 2017 IEEE Photon. J. 9 1505411
[8] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, et al. 2008 Nat. Photon. 2 728
[9] Wang D, Lei Y, Shi P and Li Z 2023 Chin. Phys. B 32 090505
[10] Tian J, Yang L, Qin C, Wu T, Wang J, Zhang Z, Li K and Copner N J 2020 IEEE Sens. J. 20 4215
[11] Li M, Zhang X, Zhang J, Zhang M, Qiao L and Wang T 2019 IEEE Photon. Technol. Lett. 31 1389
[12] Chen R, Shu H, Shen B, Chang L, Xie W, Liao W, Tao Z, Bowers J E and Wang X 2023 Nat. Photon. 17 306
[13] Feng L, Gao H, Zhang J, Yu M, Chen X, Hu W and Yi L 2021 Opt. Express 29 719
[14] Tseng C H, Funabashi R, Kanno K, Uchida A, Wei C C and Hwang S K 2021 Opt. Lett. 46 3384
[15] Liu B, Jiang Y and Ji H 2022 Photonics 9 450
[16] Guo Y, Wang D, Wang L, Jia Z, Zhao T, Chang P, Wang Y and Wang A 2023 Photonics 10 370
[17] Xue C P, Wang X, Zheng L K, Zhang H Y, Hong Y H and Zhang Z X 2025 Chin. Phys. B 34 030504
[18] Li J, Yang L, Hao Y, Feng H, Ding W, Wang J, Shang H and Ti G 2024 Opt. Express 32 12496
[19] Wang C, Li J, Zhou X, Cheng Z, Qiao L, Xue X and Zhang M 2023 Light Sci. Appl. 12 213
[20] Zhu J Y, He Z M, Huang C, Zeng J, Lin H C, Chen F C, Yu C Q, Li Y, Zhang Y T, Chen H T and Pu J X 2024 Chin. Phys. B 33 080701
[21] Zou J, Kang Z, Wang R, Wang H, Liu J, Dong C, Jiang X, Xu B, Cai Z, Qin G, Zhang H and Luo Z 2019 Nanoscale 11 15991
[22] Kowalska M, Klocek G, Piramidowicz R and Malinowski M 2004 J. Alloys Compd. 380 156
[23] Demaimay J, Kifle E, Loiko P, Pau F, Recoque G, Georges T, Rault T, Bodin L, Joulain F, Camy P and Braud A 2024 Opt. Lett. 49 4174
[24] Wang H, Zou J, Dong C, Du T, Xu B, Xu H, Cai Z and Luo Z 2019 Opt. Lett. 44 4423
[25] Zhang C, Hong J, Zhou L, Zou J and Luo Z 2023 Opt. Laser Technol. 160 109050
[26] Xie P, Zhao X M, Jain R and Gosnell T R 1998 Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro- Optics, July 1998 San Francisco, USA, p. 323
[27] Zellmer H, Riedel P and Tünnermann A 1999 Appl. Phys. B 69 417
[28] Zou J, Dong C, Wang H, Du T and Luo Z 2020 Light Sci. Appl. 9 61
[29] Ji S, Wang Z, Huang S, Shen C, Lin J, Xiao B, Feng Q, Xu H and Cai Z 2023 Opt. Laser Technol. 158 108900
[30] Liu S, Lin J, Ji S, Song Y, Feng Q, Xiao B, Wang Z, Xu H and Cai Z 2023 Opt. Laser Technol. 157 108720
[31] Wu D, Peng J, Cai Z, Weng J, Luo Z, Chen N and Xu H 2015 Opt. Express 23 24071
[32] Wu D, Quan C, Guo Z, Cai Z and Xu H 2018 J. Opt. 20 085501
[33] Luo S, Tang X, Geng X, Gu H, Li L and Cai Z 2022 Opt. Lett. 47 5881
[34] Li T, Wang Z, Zou J, Hong J, Ruan Q, Wang H, Dong Z and Luo Z 2023 Photon. Res. 11 413
[35] Lord M P, Olivier M, Bernier M and Vallée R 2023 Opt. Lett. 48 3709
[36] Luo L, Tee T and Chu P 1998 J. Opt. Soc. Am. B 15 972
[37] Abarbanel H D, Kennel M B, Buhl M and Lewis C T 1999 Phys. Rev. A 60 2360
[1] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[2] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[3] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
[4] Analysis of field coupling to transmission lines with random rotation over the ground
Xie Hai-Yan (谢海燕), Li Yong (李勇), Qiao Hai-Liang (乔海亮), Wang Jian-Guo (王建国). Chin. Phys. B, 2015, 24(6): 060501.
[5] The mixed-spins 1/2 and 3/2 Blume–Capel model with a random crystal field
Erhan Albayrak . Chin. Phys. B, 2012, 21(6): 067501.
No Suggested Reading articles found!