| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
A sound-sensitive neuron incorporating a memristive-ion channel |
| Xin-Lin Song(宋欣林)1, Ge Zhang(张鬲)1, and Fei-Fei Yang(杨飞飞)2,† |
1 College of Science, Xi'an University of Science and Technology, Xi'an 710054, China; 2 College of Artificial Intelligence and Computer Science, Xi'an University of Science and Technology, Xi'an 710054, China |
|
|
|
|
Abstract The nonlinear memory characteristics of memristors resemble those of biological synapses and ion channels. Therefore, memristors serve as ideal components for constructing artificial neurons. This paper presents a sound-sensitive neuron circuit featuring a memristor-based hybrid ion channel, designed to simulate the dynamic response mechanisms of biological auditory neurons to acoustic signals. In this neural circuit, a piezoelectric ceramic element captures external sound signals, while the hybrid ion channel is formed by connecting a charge-controlled memristor in series with an inductor. The circuit realizes selective encoding of sound frequency and amplitude and investigates the influence of external electric fields on neuronal ion-channel dynamics. In the dynamic analysis, bifurcation diagrams and Lyapunov exponents are employed to reveal the rich nonlinear behaviors, such as chaotic oscillations and periodic oscillations, exhibited by the circuit during the acoustic-electric conversion process, and the validity of the circuit model is experimentally verified. Simulation results show that by adjusting the threshold of the ratio between electric-field energy and magnetic-field energy, the firing modes and parameters of neurons can be adaptively regulated. Moreover, the model exhibits stochastic resonance in noisy environments. This research provides a theoretical foundation for the development of new bionic auditory sensing hardware and opens a new path for the bio-inspired design of memristor-ion-channel hybrid systems.
|
Received: 05 August 2025
Revised: 08 September 2025
Accepted manuscript online: 10 September 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
| |
84.30.-r
|
(Electronic circuits)
|
|
| Fund: Project supported by the Youth Innovation Team of Shaanxi Universities. |
Corresponding Authors:
Fei-Fei Yang
E-mail: yangfeifei@xust.edu.cn;dlpuyff@sina.com
|
Cite this article:
Xin-Lin Song(宋欣林), Ge Zhang(张鬲), and Fei-Fei Yang(杨飞飞) A sound-sensitive neuron incorporating a memristive-ion channel 2025 Chin. Phys. B 34 120502
|
[1] Liu Y, Xu W, Ma J, Alzahrani F and Hobiny A 2020 Front. Inf. Technol. Electron. Eng. 21 1387 [2] Xu Y, Guo Y, Ren G and Ma J 2020 Appl. Math. Comput. 385 125427 [3] Guo Y, Zhou P, Yao Z and Ma J 2021 Nonlinear Dyn. 105 3603 [4] Song X and Yang F 2024 Phys. Scr. 99 125247 [5] Yang F, Guo Q, Ren G and Ma J 2024 J. Biol. Phys. 50 271 [6] Chua L 1971 IEEE Trans. Circuit Theory 18 507 [7] Khalid M 2019 Trans. Electr. Electron. Mater. 20 289 [8] Li Y, Wang Z, Midya R, Xia Q and Yang J J 2018 J. Phys. D: Appl. Phys. 51 503002 [9] Zhang L, Li Z and Peng Y 2024 Chaos, Solitons Fractals 185 115109 [10] Zhang J and Li Z 2024 Nonlinear Dyn. 112 6647 [11] Guo H, Liang Y, Wang G, Li Y, Wang L and Zhao Y 2025 Int. J. Bifurc. Chaos 35 2550075 [12] Shi S, Liang Y, Li Y, Lu Z and Dong Y 2024 Chaos, Solitons Fractals 180 114534 [13] Ma J 2025 Nonlinear Dyn. 113 25365 [14] Yang F, Han Z, Ren G, Guo Q and Ma J 2024 Eur. Phys. J. Plus 139 534 [15] Xie Y, Ye Z, Li X, Wang X and Jia Y 2024 Cogn. Neurodynamics 18 1989 [16] Njitacke Z T, Ramadoss J, Takembo C N, Rajagopal K and Awrejcewicz J 2023 Chaos, Solitons Fractals 167 113014 [17] Yang F, Xu Y and Ma J 2023 Chaos 33 023110 [18] Yang F, Ren G and Tang J 2023 Nonlinear Dyn. 111 21917 [19] Song X and Yang F 2025 J. Theor. Biol. 599 112034 [20] Guo Y, Wu F, Yang F and Ma J 2023 Chaos 33 113106 [21] Wan J, Wu F, Ma J and Wang W 2024 Chin. Phys. B 33 050504 [22] Yang F, Song X and Yu Z 2024 Chaos, Solitons Fractals 188 115496 [23] Yu Z, Zhu K, Wang Y and Yang F 2025 Chaos, Solitons Fractals 194 116233 [24] Yang F, Song X and Yu Z 2025 Nonlinear Dyn. 113 7213 [25] Yang F, Song X and Xu Y 2025 Chaos, Solitons Fractals 199 116740 [26] Jia J, Wang C, Zhang X and Zhu Z 2024 Chaos, Solitons Fractals 182 114738 [27] Yang F, Song X and Ma J 2024 Chin. J. Phys. 91 287 [28] Li Y, Lv M, Ma J and Hu X 2024 Nonlinear Dyn. 112 7541 [29] Fang X, Duan S and Wang L 2023 Neurocomputing 517 93 [30] Huang L, Huang Q, Zang H, Lei T, Fu H and Gao F 2025 Phys. Scr. 100 065232 [31] Chen X, Wang N, Wang Y, Wu H and Xu Q 2023 Chaos, Solitons Fractals 174 113836 [32] Bao B, Hu J, Cai J, Zhang X and Bao H 2023 Nonlinear Dyn. 111 3765 [33] Liu B, Peng X and Li C 2024 AEU - Int. J. Electron. Commun. 178 155283 [34] Bao B, Hu J, Bao H, Xu Q and Chen M 2024 Cogn. Neurodynamics 18 539 [35] Yang F, Ma J and Wu F 2024 Chaos, Solitons Fractals 187 115361 [36] Ren G, Xu Y and Wang C 2017 Nonlinear Dyn. 88 893 [37] Guo Y, Zhu Z, Wang C and Ren G 2020 Optik 218 164993 [38] Xie Y, Wang X, Li X, Ye Z, Wu Y, Yu D and Jia Y 2024 Chin. J. Phys. 90 64 [39] Yang F and Ma J 2023 Pramana 97 55 [40] Xie Y, Yao Z and Ma J 2022 Front. Inf. Technol. Electron. Eng. 23 1407 [41] Xie Y, Yao Z and Ma J 2023 Sci. China Technol. Sci. 66 439 [42] Yang F, Wang Y and Ma J 2023 Commun. Nonlinear Sci. Numer. Simul. 119 107127 [43] Yang F, Hu X, Ren G and Ma J 2023 Eur. Phys. J. B 96 80 [44] Njitacke Z T, Takembo C N, Awrejcewicz J, Fouda H P E and Kengne J 2022 Chaos, Solitons Fractals 160 112211 [45] Wang C, Lv M, Alsaedi A and Ma J 2017 Chaos 27 113108 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|