|
Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
| INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area |
| Lin Zhu(朱林)1,2, Jianrong Zhou(周健荣)1,2,3,†, Xiaojuan Zhou(周晓娟)1,2,‡, Lixin Zeng(曾莉欣)1,2, Liang Xiao(肖亮)1,2, Hong Xu(许虹)1,2, Fei Jia(贾飞)1,2, Chaoyue Zhang(张超月)1,2, Yezhao Yang(杨烨钊)4, Dingfu Li(黎定福)4, Hao Xiong(熊皓)4, Yuguang Xie(谢宇广)1,3, Yubin Zhao(赵豫斌)1,2,3, Yadong Wei(魏亚东)4, Zhijia Sun(孙志嘉)1,2,3, and Yuanbo Chen(陈元柏)1,2,3 |
1 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 2 Spallation Neutron Source Science Center, Dongguan 523803, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Institute of Science & Technology Innovation, Dongguan University of Technology (Institute of Science & Technology Innovation and Advanced Manufacturing), Dongguan 523803, China |
|
|
|
|
Abstract The rapid growth of neutron flux has driven the development of $^{3}$He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutron Source (CSNS). Position-sensitive neutron detectors with a high counting rate and large area play an important role in the instruments performing neutron measurements in or close to the direct beam. The ceramic gas-electron-multiplier (GEM) detector serves as a promising solution, and considerable work has been done using the small-area GEM neutron detectors. In this article, we designed and constructed a detector prototype utilizing ceramic GEM foils with an effective area of about 307 mm$\times$307 mm. To evaluate and investigate their basic characteristics, the Monte Carlo (MC) tool FLUKA was employed and several neutron beam tests were conducted at CSNS. The simulated spatial resolution was basically in agreement with the measured value of 2.50$\pm$0.01 mm (FWHM). The wavelength spectra measurement was verified through comparisons with a commercial beam monitor. In addition, a detection efficiency of 4.7$\pm$0.1% was achieved for monoenergetic neutrons of 1.59 Å wavelength. This is consistent with the simulated result. The results indicate that the large-area ceramic GEM detector is a good candidate to implement neutron beam measurements. Its efficiency can be improved in a cascading manner to approach that reached by traditional $^{3}$He detectors.
|
Received: 30 April 2025
Revised: 04 June 2025
Accepted manuscript online: 11 June 2025
|
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
| |
29.40.Gx
|
(Tracking and position-sensitive detectors)
|
| |
28.20.Pr
|
(Neutron imaging; neutron tomography)
|
| |
61.05.F-
|
(Neutron diffraction and scattering)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFC2206502), the National Natural Science Foundation of China (Grant Nos. 12175254 and 12227810), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000003), and Guangdong Provincial Key Laboratory of Advanced Particle Detection Technology (Grant No. 2024B1212010005). |
Corresponding Authors:
Jianrong Zhou, Xiaojuan Zhou
E-mail: zhoujr@ihep.ac.cn;xjzhou@ihep.ac.cn
|
Cite this article:
Lin Zhu(朱林), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lixin Zeng(曾莉欣), Liang Xiao(肖亮), Hong Xu(许虹), Fei Jia(贾飞), Chaoyue Zhang(张超月), Yezhao Yang(杨烨钊), Dingfu Li(黎定福), Hao Xiong(熊皓), Yuguang Xie(谢宇广), Yubin Zhao(赵豫斌), Yadong Wei(魏亚东), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏) Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area 2025 Chin. Phys. B 34 090701
|
[1] Mason T E, Abernathy D, Anderson I, et al. 2006 Physica B 385 955 [2] Thomason J W 2019 Nucl. Instrum. Methods Phys. Res. A 917 61 [3] Oyama Y 2006 Nucl. Instrum. Methods Phys. Res. A 562 548 [4] Chen H S and Wang X L 2016 Nat. Mater. 15 689 [5] Lindroos M, Bousson S, Calaga R, Danared H, Devanz G, Duperrier R, Eguia J, Eshraqi M, Gammino S, Hahn H, Jansson A, Oyon C, Pape- Møller S, Peggs S, Ponton A, Rathsman K, Ruber R, Satogata T and Trahern G 2011 Nucl. Instrum. Methods Phys. Res. B 269 3258 [6] Ke Y B, He C Y, Zheng H B, Geng Y S, Fu J Y, Zhang S K, Hu H T, Wang S L, Zhou B, Wang F W and Tao J Z 2018 Neutron News 29 14 [7] Zhu T, Zhan X Z, Xiao S W, Sun Y, Wu Y Y, Zhou A Y and Han Q F 2018 Neutron News 29 11 [8] Chen J, Kang L and Lu H L 2018 Physica B 551 370 [9] Xu J P, Xia Y G, Li Z D, Chen H C, Wang X L, Sun Z Z and Yin W 2021 Nucl. Instrum. Methods Phys. Res. A 1013 165642 [10] Hendricks R W 1969 Rev. Sci. Instrum. 40 1216 [11] Dana A S and Daniel M 2011 The Helium-3 Shortage: Supply, Demand, and Options for Congress [12] Sauli F 2002 Nucl. Instrum. Methods Phys. Res. A 477 1 [13] Klein M and Schmidt C J 2011 Nucl. Instrum. Methods Phys. Res. A 628 9 [14] Uno S, Uchida T, Sekimoto M, Murakami T, Miyama K, Shoji M, Nakano E, Koike T, Morita K, Satoh H, Kamiyama T and Kiyanagi Y 2012 Phys. Procedia 26 142 [15] Croci G, Cazzaniga C, Claps G, Tardocchi M, Rebai M, Murtas F, Vassallo E, Caniello R, Cippo E P, Grosso G, Rigato V and Gorini G 2014 Prog. Theor. Exp. Phys. 2014 83 [16] Köhli M, Allmendinger F, Häußler W, Schröder T, Klein M, Meven M and Schmidt U 2016 Nucl. Instrum. Methods Phys. Res. A 828 242 [17] Muraro A, Claps G, Croci G, Lai C C, Oliveira R D, Altieri S, Cancelli S, Gorini G, Hall-Wilton R, Höglund C, Cippo E P, Robinson L, Svensson P and Murtas F 2021 Eur. Phys. J. Plus 136 742 [18] Ohshita H, Otomo T, Uno S, Ikeda K, Uchida T, Kaneko N, Koike T, Shoji M, Suzuya K, Seya T and Tsubota M 2012 Nucl. Instrum. Methods Phys. Res. A 672 75 [19] Zhou J R, Zhou X J, Zhou J J, Jiang X F, Yang J Q, Zhu L, Yang W Q, Yang T, Xu H, Xia Y G, Yang G A, Xie Y G, Huang C Q and Hu B T, Sun Z J and Chen Y B 2020 Nucl. Eng. Technol. 52 1277 [20] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 962 163593 [21] Zhou J J, Zhou J R, Zhou X J, Zhu L, Wei Y D, Xu H, Guan B J, Wu H Y, Wei K, Yang J Q, Wu X G, Yang G A, Xie Y G, Zhang Y, Wang X H, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. A 995 165129 [22] Yang T, Zhou J R, Zhou X J, Zhu L, Zhu H Y, Zhou J J, Xia Y G, Wei Y D, Jiang X F, Yang W Q, Yang G A, Wang S L, Xie Y G, Sun Z J, Ouyang Q, Zhu J T and Chen Y B 2022 IEEE Trans. Nucl. Sci. 69 68 [23] Zhu L, Zhou J R, Zeng L X, et al. 2023 J. Instrum. 18 P01033 [24] Tan J H, Zhou J R, Zhu L, et al. 2023 Rev. Sci. Instrum. 94 103304 [25] Sauli F 2002 Nucl. Instrum. Methods Phys. Res. A 479 294 [26] Kaminski J, Ball M, Bieser F, Janssen M, Kappler S, Ledermann B, Müller T, Ronan M and Wienemann P 2004 Nucl. Instrum. Methods Phys. Res. A 535 201 [27] Becker J, Bösiger K, Lindfeld L, Müller K, Robmann P, Schmitt S, Schmitz C, Steiner S, Straumann U, Szeker K, Truöl P, Urban M, Vollhardt A, Werner N, Baumeister D, Löchner S and Hildebrandt M 2008 Nucl. Instrum. Methods Phys. Res. A 586 190 [28] Neutron Beam Monitors https://ordela.com/neutron-beam-monitors/ |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|