Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090302    DOI: 10.1088/1674-1056/24/9/090302
GENERAL Prev   Next  

Time evolution of negative binomial optical field in a diffusion channel

Liu Tang-Kun (刘堂昆)a, Wu Pan-Pan (吴盼盼)a, Shan Chuan-Jia (单传家)a, Liu Ji-Bing (刘继兵)a, Fan Hong-Yi (范洪义)b
a College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  

We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.

Keywords:  negative binomial optical field      time evolution      diffusion channel      integration within an ordered product (IWOP) of operators  
Received:  06 January 2015      Revised:  17 April 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB922103), the National Natural Science Foundation of China (Grant Nos. 11175113, 11274104, and 11404108), and the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDA021).

Corresponding Authors:  Liu Tang-Kun     E-mail:  tkliuhs@163.com

Cite this article: 

Liu Tang-Kun (刘堂昆), Wu Pan-Pan (吴盼盼), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义) Time evolution of negative binomial optical field in a diffusion channel 2015 Chin. Phys. B 24 090302

[1] Fan H Y, Lou S Y and Pan X Y 2014 Sci. Chin. Phys. Mech. Astron. 57 1649
[2] Carmichael H J 1999 Statistical Methods in Ouantum Optics I, Master Equation and Fokker-Planck Equations (Berlin: Springer-Verlag)
[3] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
[4] Agarwal G S 1992 Phys. Rev. A 45 1787
[5] Fan H Y and Jing S C 1994 Phys. Rev. A 50 1909
[6] Fan H Y and Jing S C 1995 Commun. Theor. Phys. 24 377
[7] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[8] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[9] Liu T K, Shan C J, Liu J B and Fan H Y 2014 Chin. Phys. B 23 030303
[10] Fan H Y, Lou S Y, Pan X Y and Da C 2013 Acta Phys. Sin. 62 240301 (in Chinese)
[1] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[2] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[3] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[4] Master equation describing the diffusion process for a coherent state
Liu Tang-Kun (刘堂昆), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030303.
[5] New approach for obtaining the time-evolution law of chaotic light field in damping–gaining process
Gong Li-Hua (龚黎华), Zhou Nan-Run (周南润), Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080302.
[6] Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule
Jia Ning (贾宁), Ma Shou-Feng (马寿峰), Zhong Shi-Quan (钟石泉). Chin. Phys. B, 2012, 21(10): 100206.
[7] Late-time evolution of massive Dirac fields in the Kerr background
He Xi(贺喜) and Jing Ji-Liang(荆继良). Chin. Phys. B, 2006, 15(12): 2850-2855.
[8] General demonstration of principal states of polarization and real-time monitoring of polarization mode dispersion in optical fibres
Dong Hui (董晖), Wu Chong-Qing (吴重庆), Fu Song-Nian (付松年). Chin. Phys. B, 2004, 13(8): 1291-1295.
[9] Study of the stability of polarization mode dispersion in fibre
Fu Song-Nian (付松年), Wu Chong-Qing (吴重庆), Liu Hai-Tao (刘海涛), Shum Ping (沈平), Dong Hui (董晖). Chin. Phys. B, 2003, 12(12): 1423-1428.
No Suggested Reading articles found!