Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094206    DOI: 10.1088/1674-1056/add4f2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entropy evolution law of a general linear state for diffusion noise

Yingyu Zhang(张映玉)1,† and Yixing Wang(王依兴)2,‡
1 School of Information Science and Technology, Hainan Normal University, Haikou 571127, China;
2 School of Automation and Electrical Engineering, Linyi University, Linyi 276000, China
Abstract  Based on the Kraus operator-sum representation of the analytical solution of the diffusion equation, we obtain the evolution of a general linear state in the diffusion channel. Also, we study the quantum statistical properties of the initial general linear state and its von-Neumann entropy evolution in the diffusion channel, especially find that the entropy evolution is influenced by the diffusion noise and the thermal parameter but without the displacement.
Keywords:  general linear state      diffusion channel      quantum statistical property      entropy evolution  
Received:  31 December 2024      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 621RC741 and 622RC668).
Corresponding Authors:  Yingyu Zhang, Yixing Wang     E-mail:  zhyy8070@126.com;wangyixing@lyu.edu.cn

Cite this article: 

Yingyu Zhang(张映玉) and Yixing Wang(王依兴) Entropy evolution law of a general linear state for diffusion noise 2025 Chin. Phys. B 34 094206

[1] Saleh B E A and Teich M C 1987 Phys. Rev. Lett. 58 2656
[2] Weiss G H and Maradudin A A 1962 J. Math. Phys. 3 771
[3] Aronson R and Corngold N 1999 J. Opt. Soc. Am. A 16 1066
[4] Wu W F, Fang Y and Fu P 2024 Chin. Phys. B 33 094202
[5] Yu H J and Fan H Y 2022 Chin. Phys. B 31 020301
[6] Li G X, Tan H T,Wu S P and Huang G M 2006 Phys. Rev. A 74 025801
[7] Fan H Y, Lou S Y, Pan X Y and Hu L Y 2014 Sci. China Phys. Mech. Astron. 57 1649
[8] Fan H Y, Hu L Y and Fan Y 2006 Ann. Phys. 321 480
[9] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387
[10] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[11] Meng X G, Wang J S, Zhang X Y, Yang Z S, Liang B L and Zhang Z T 2020 Ann. Phys. (Berlin) 532 2000219
[12] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L 2020 Ann. Phys. (Berlin) 532 1900585
[13] Fan H Y 1991 Phys. Lett. A 161 1
[14] Fan H Y 2003 J. Opt. B: Quantum Seciclass. Opt. 5 R147
[15] Kano Y 1974 J. Phys. Soc. Jpn. 36 39
[16] Vaccaro J 1995 Phys. Rev. A 52 3474
[17] Guo Y, Zhang X, Du Q P, Yang Z S and Li J P 2023 J. Liaocheng Univ. (Nat. Sci. Ed.) 36 39
[18] Chen F and Fan H Y 2013 Ann. Phys. 334 272
[19] Meng X G, Liang B L, Liu J M and Zhou X C 2025 Front. Phys. 20 022205
[20] Zhang J D and Wang S 2024 J. Liaocheng Univ. (Nat. Sci. Ed.) 37 23
[1] Entropy variances of pure coherent states in the diffusion channel
Wei-Feng Wu(吴卫锋), Yong Fang(方勇), and Peng Fu(付鹏). Chin. Phys. B, 2024, 33(9): 094202.
[2] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[3] Time evolution of negative binomial optical field in a diffusion channel
Liu Tang-Kun (刘堂昆), Wu Pan-Pan (吴盼盼), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2015, 24(9): 090302.
No Suggested Reading articles found!