|
|
|
Interacting bosons in a three-dimensional lattice |
| Dian-Cheng Zhang(张典承)1,† and Shi-Jie Yang(杨师杰)2 |
1 College of Science, Hainan Tropical Ocean University, Sanya 572022, China; 2 Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice. In the framework of the dynamical Gutzwiller mean-field theory, we identify a checkerboard supersolid phase. By considering the repulsive interactions between next-nearest-neighbor lattice sites, we further discover an exotic type of supersolid state, whose site occupancies show a stereoscopically arrayed and staggered distribution rather than checkerboard ordering. Intriguingly, if the physical observations of two neighboring layers were superimposed, they would give rise to a checkerboard configuration. This novel structure is convincingly induced by the simultaneous existence of nearest-neighbor and next-nearest-neighbor interactions. We also identify arrayed stripes in the ground state, as well as arrayed holes in the pattern of occupancies.
|
Received: 01 February 2025
Revised: 09 April 2025
Accepted manuscript online: 24 April 2025
|
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
| |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
| |
67.85.Fg
|
(Multicomponent condensates; spinor condensates)
|
|
| Fund: Project supported by the Hainan Provincial Natural Science Foundation of China (Grant No. 525QN342) and the Scientific Research Foundation of Hainan Tropical Ocean University (Grant No. RHDRC202301). |
Corresponding Authors:
Dian-Cheng Zhang
E-mail: zhangdiancheng16@mails.ucas.ac.cn
|
Cite this article:
Dian-Cheng Zhang(张典承) and Shi-Jie Yang(杨师杰) Interacting bosons in a three-dimensional lattice 2025 Chin. Phys. B 34 080304
|
[1] Koch T, Lahaye T, Metz J, Fröhlich B, Griesmaier A and Pfau T 2008 Nat. Phys. 4 218 [2] Lu M, Youn S H and Lev B L 2010 Phys. Rev. Lett. 104 063001 [3] Zhang C, Safavi-Naini A, Rey A M and Capogrosso-Sansone B 2015 New J. Phys. 17 123014 [4] Baier S, Mark M J, Petter D, Chomaz L, Aikawa K and Cai Z 2016 Science 352 201 [5] Bandyopadhyay S, Bai R, Pal S, Suthar K, Nath R and Angom D 2019 Phys. Rev. A 100 053623 [6] Su L, Douglas A, Szurek M, Groth R, Ozturk S F and Szypryt P 2023 Nature 622 724 [7] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202 [8] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Cagri F, Jamison A O and Ketterle W 2017 Nature 543 91 [9] Leonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87 [10] Pollet L 2019 Nature 569 494 [11] Natale G, van Bijnen R M W, Patscheider A, Petter D, Mark M J, Chomaz L and Ferlaino F 2019 Phys. Rev. Lett. 123 050402 [12] Chomaz L, Petter D, Ilzhöfer P, Natale G, Trautmann A, Politi C, Sohmen M and Ferlaino F 2019 Phys. Rev. X 9 021012 [13] Norcia M A, Politi C, Klaus L, Poli E, Sohmen M, Mark M J, Bisset R N, Santos L and Ferlaino F 2021 Nature 596 357 [14] Boninsegni M and Prokofev N V 2012 Rev. Mod. Phys. 84 759 [15] Li Y, Martone G I, Pitaevskii L P and Stringari S 2013 Phys. Rev. Lett. 110 235302 [16] Recati A and Stringari S 2023 Nat. Rev. Phys. 5 735 [17] Batrouni G G, Hébert F and Scalettar R T 2006 Phys. Rev. Lett. 97 087209 [18] Sengupta P and Batista C D 2007 Phys. Rev. Lett. 99 217205 [19] Mathey L, Danshita I and Clark C W 2009 Phys. Rev. A 79 011602 [20] Burnell F J, Parish M M, Cooper N R and Sondhi S L 2009 Phys. Rev. B 80 174519 [21] Pu D D,Wang J G, Song Y F,Wang Y Z, Cheng L H, Liu J B and Shan C J 2023 Physica A 623 128838 [22] Ng K K and Chen Y C 2008 Phys. Rev. B 77 052506 [23] Danshita I and Sá de Melo C A R 2009 Phys. Rev. Lett. 103 225301 [24] Capogrosso-Sansone B, Trefzger C, Lewenstein M, Zoller P and Pupillo G 2010 Phys. Rev. Lett. 104 125301 [25] Danshita I and Yamamoto D 2010 Phys. Rev. A 82 013645 [26] Boninsegni M 2003 J. Low Temp. Phys. 132 39 [27] Wessel S and Troyer M 2005 Phys. Rev. Lett. 95 127205 [28] Heidarian D and Damle K 2005 Phys. Rev. Lett. 95 127206 [29] Boninsegni M and Prokofev N 2005 Phys. Rev. Lett. 95 237204 [30] Isakov S V,Wessel S, Melko R G, Sengupta K and Kim Y B 2006 Phys. Rev. Lett. 97 147202 [31] Trefzger C, Menotti C and Lewenstein M 2009 Phys. Rev. Lett. 103 035304 [32] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546 [33] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [34] Altman E and Auerbach A 2002 Phys. Rev. Lett. 89 250404 [35] Kashurnikov V A, Prokofev N V and Svistunov B V 2002 Phys. Rev. A 66 031601 [36] Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann D S and Malomed B A 2015 Rep. Prog. Phys. 78 066001 [37] Chen H J, Yu Y Q, Zheng D C and Liao R Y 2020 Sci. Rep. 10 9076 [38] Kuno Y, Shimizu K and Ichinose I 2017 Phys. Rev. A 95 013607 [39] Batrouni G G, Rousseau V G, Scalettar R T and Gremaud B 2015 J. Phys.: Conf. Ser. 640 012042 [40] Biedron K, Lacki M and Zakrzewski J 2018 Phys. Rev. B 97 245102 [41] Singh M, Mondal S, Sahoo B K and Mishra T 2017 Phys. Rev. A 96 053604 [42] Kimura T 2011 Phys. Rev. A 84 063630 [43] Ohgoe T, Suzuki T and Kawashima N 2012 Phys. Rev. B 86 054520 [44] Su X Q, Xu Z J and Zhao Y Q 2023 Chin. Phys. B 32 020506 [45] Batrouni G G, Scalettar R T, Zimanyi G T and Kampf A P 1995 Phys. Rev. Lett. 74 2527 [46] Hébert F, Batrouni G G, Scalettar R T, Schmid G, TroyerMand Dorneich A 2001 Phys. Rev. B 65 014513 [47] Yamamoto D, Masaki A and Danshita I 2012 Phys. Rev. B 86 054516 [48] Wu H K and Tu W L 2020 Phys. Rev. A 102 053306 [49] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406 [50] Frey E and Balents L 1997 Phys. Rev. B 55 1050 [51] Yi S, Li T and Sun C P 2007 Phys. Rev. Lett. 98 260405 [52] Yamamoto K, Todo S and Miyashita S 2009 Phys. Rev. B 79 094503 [53] Xi B, Ye F, Chen W, Zhang F and Su G 2011 Phys. Rev. B 84 054512 [54] Ohgoe T, Suzuki T and Kawashima N 2012 Phys. Rev. Lett. 108 185302 [55] Jaksch D, Venturi V, Cirac J I, Williams C J and Zoller P 2007 Phys. Rev. Lett. 89 040402 [56] Trefzger C, Menotti C and Capogrosso-Sansone B 2011 J. Phys. B: At. Mol. Opt. Phys. 44 193001 [57] Kovrizhin D L, Pai G V and Sinha S 2005 Europhys. Lett. 72 162 [58] Li Y, Xing C, Gong M, Guo G and Yuan J 2024 Chin. Phys. Lett. 41 026701 [59] Suthar K, Sable H, Bai R, Pal S and Angom D 2020 Phys. Rev. A 102 013320 [60] Natale G, van Bijnen R M W, Patscheider A, Petter D, Mark M J, Chomaz L and Ferlaino F 2019 Phys. Rev. Lett. 123 050402 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|