Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027701    DOI: 10.1088/1674-1056/ad9e94
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model

Cancan Shao(邵灿灿)1,2,3 and Houbing Huang(黄厚兵)1,2,3,†
1 Beijing Institute of Technology, Zhuhai Beijing Institute of Technology, Zhuhai 519088, China;
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Abstract  Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effective Hamiltonian method in conjuction with the phase-field model, we have successfully reproduced the thermal hysteresis observed in ferroelectric materials during phase transitions. The computational results regarding the electrocaloric effect from these two different computational scales closely align with experimental measurements. Furthermore, we analyze how the first-order ferroelectric phase transition gradually diminishes with an increasing applied electric field, exhibiting characteristics of second-order-like phase transition. By employing the characteristic parameters of thermal hysteresis, we have established a pathway for calculations across different computational scales, thereby providing theoretical support for further investigations into the properties of ferroelectric materials through concurrent multiscale simulations.
Keywords:  ferroelectric phase transition      thermal hysteresis      multiscale simulation      effective Hamiltonian      phase-field model  
Received:  16 August 2024      Revised:  13 December 2024      Accepted manuscript online:  13 December 2024
PACS:  77.60.Ej  
  47.11.St (Multi-scale methods)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported financially by the National Natural Science Foundation of China (Grant No. 52372100) and the National Key Research and Development Program of China (Grant No. 2019YFA0307900).
Corresponding Authors:  Houbing Huang     E-mail:  hbhuang@bit.edu.cn

Cite this article: 

Cancan Shao(邵灿灿) and Houbing Huang(黄厚兵) Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model 2025 Chin. Phys. B 34 027701

[1] Tino G, Adrià G C, Maximilian F, Andreas T, Lukas P, Lluís M, Antoni P, Konstantin P S and Gutfleisch O 2018 Nat. Mater. 17 929
[2] Lee J D, Li J, Zhang Z and Wang L 2018 Sequential and Concurrent Multiscale Modeling of Multiphysics: From Atoms to Continuum In Micromechanics and Nanomechanics of Composite Solids (Ed. by Meguid S and Weng G) (Cham: Springer)
[3] Fish J, Wagner G J and Keten S 2021 Nat. Mater. 20 774
[4] John G M, Farhat C and Fish J 2005 J. Comput. Inf. Sci. Eng. 5 198
[5] Lu G, Tadmor E B and Kaxiras E 2006 Phys. Rev. B. 73 024108
[6] Wing K, Liu S, Hao J, et al. 2003 Multiscale analysis and design in heterogeneous system In Proceeding of VII International Conference on Computational Plasticity, Barcelona (Ed. by Onate E and Owen D R J)
[7] Valasek J 1921 Phys. Rev. 17 475
[8] Ghosez P and Junquera J 2022 Annu. Rev. Condens. Matter Phys. 13 325
[9] Lines M E 1969 Phys. Rev. 177 797
[10] Sato M, Kumada A, Hidaka K, Yasuoka T, Hoshina Y and Shiiki M 2023 IEEE Tran. Dielecr. Electr. Insul. 30 674
[11] Lu G, Tadmor E B and Kaxiras E 2006 Phys. Rev. B. 73 024108
[12] Huang J, Zhuang Q, Hu Y, Yu Q and Liu S 2022 Ferroelectrics Advances in fundamental studies and emerging applications (IOP Publishing Ltd) pp. 3-22
[13] Wakili R, Lange S and Ricoeur A 2023 Comput. Mech. 72 1295
[14] Pešiü M, Lecce VD, Pramanik D and Larcher L 2018 International Conference on Simulation of Semiconductor Processes and Devices, 2018, Austin, USA, pp. 111-114
[15] Völker B, Lanis C M and Kamlah M 2012 Smart Mater. Struct. 21 035025
[16] Völker B, Marton P, Elsässer C and Kamlah M 2011 Continuum Mech. Thermodyn. 23 435
[17] Wang J, Wang B and Chen L 2019 Ann. Rev. Matter. Res. 49 127
[18] He C, Ge J, Qi D, Gao J, Chen Y, Liang J and Fang D N 2019 Compos. Sci. Technol. 171 21
[19] Liu B, Kovachki N, Li Z, Azizzadenesheli K, Anandkumar A, Stuart A M and Bhattacharya K 2022 J. Mech. Phys. 158 104668
[20] Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B. 52 6301
[21] Zhong W, Vanderbilt D and Rabe K M 1994 Phys. Rev. Lett. 73 1861
[22] Campbell D S 1976 Phys. Bull. 27 124
[23] King-Smith R D and Vanderbilt D 1994 Phys. Rev. B 49 1651
[24] Beckman S P, Wan L F, Barr H A and Nishimatsu T 2012 Mater. Lett. 89 254
[25] Yang Y, Bellaiche L and Xiang H 2022 Chin. Phys. Lett. 39 097701
[26] Devonshire A F 1949 XCVI. Theory of barium titanate - Part I, Series 7, (Taylor & Francis Online) pp. 1040-1063
[27] Devonshire A F 1949 CIX. Theory of barium titanate - Part II, Series 7, (Taylor & Francis Online) pp. 1040-1063
[28] Devonshire A F 1954 Adv. Phys. 3 85
[29] Chen L 2002 Ann. Rev. Mater. Res. 32 113
[30] Guo C and Huang H 2022 Microstructures 2 2022021
[31] Wang J, Wu P, Ma X and Chen L 2010 J. Appl. Phys. 108 114105
[32] Huang Y, Wang J, Yang T, Wu Y, Ma X and Chen L 2018 Appl. Phys. Lett. 112 102901
[33] Qin H, Zhao J, Chen X, Li H, Wang S, Du Y, Zhou H, Li P and Wang D 2023 Microstructures 3 2023035
[34] Liu Y, Aziguli H, Zhang B, XuW, LuW, Bernholc J andWang Q 2018 Nature 562 96
[35] Wei X, Prokhorenko S, Wang B, Liu Z, Xie Y, Nahas Y, Jia C, Dunin- Borkowski R E, Mayer J, Belleiche L and Ye Z 2021 Nat. Commun. 12 5322
[36] Li Z, Wu H, Li J, Wang S, Qin S, He J, Liu C, Su Y, Qiao L, Lookman T and Bai Y 2022 Acta Mater. 228 117784
[37] Liu Y, Haibibu A, Xu W, Han Z and Wang Q 2020 Adv. Funct. Mater. 30 2000648
[38] Li Z, Mao Z and Corcolla R 2023 Mech. Mater. 187 104842
[39] Bassiouny E and Maugin G A 1989 Int. J. Eng. Sci. 27 975
[40] Huber J, Fleck N, Landis C M and McMeeking R M 1999 J. Mech. Phys. Solids 47 1663
[41] Mehling V, Tsakmakis C and Gross D 2007 J. Mech. Phys. Solids 55 2106
[42] Tarnaoui M, Zaim M, Kerouad M and Zaim A 2019 Phys. Lett. A 384 126093
[43] Nishimatsu T, Waghmare U V, Kawazoe Y and Vanderbilt D 2008 Phys. Rev. B 78 104104
[44] Paul J, Nishimatsu T, Kawazoe Y and Waghmare U V 2007 Phys. Rev. Lett. 99 077601
[45] Zhao J, Gao J, Li W, et al. 2021 Nat. Commun. 12 747
[1] Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
Guo-Hua Liang(梁国华) and Pei-Lin Yin(尹佩林). Chin. Phys. B, 2024, 33(2): 020201.
[2] High-order Hamiltonian obtained by Foldy-Wouthuysen transformation up to the order of mα8
Tong Chen(陈彤), Xuesong Mei(梅雪松), Wanping Zhou(周挽平), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2023, 32(8): 083101.
[3] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[4] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[5] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[6] Temperature dependence of migration features of self-interstitials in zirconium
Rui Zhong(钟睿), Qing Hou(侯氢), Chao-Qiong Ma(马超琼), Bao-Qin Fu(付宝勤), Jun Wang(汪俊). Chin. Phys. B, 2017, 26(12): 120202.
[7] MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects
Yue Ming (岳明), Zhang Hong-Guo (张红国), Liu Dan-Min (刘丹敏), Zhang Jiu-Xing (张久兴). Chin. Phys. B, 2015, 24(1): 017505.
[8] Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder
Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2013, 22(7): 077701.
[9] Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ). Chin. Phys. B, 2012, 21(8): 083101.
[10] Strain-induced ferroelectric phase transitions in incipient ferroelectric rutile TiO2
Ni Li-Hong(倪利红), Liu Yong(刘涌), Ren Zhao-Hui(任召辉), Song Chen-Lu(宋晨路), and Han Gao-Rong(韩高荣) . Chin. Phys. B, 2011, 20(10): 106102.
[11] Phase-field simulation of dendritic growth in a binary alloy with thermodynamics data
Long Wen-Yuan(龙文元), Xia Chun(夏春), Xiong Bo-Wen(熊博文), and Fang Li-Gao(方立高) . Chin. Phys. B, 2008, 17(3): 1078-1083.
[12] Paraelectric--ferroelectric interface dynamics induced by latent heat transfer and irreversibility of ferroelectric phase transitions
Ai Shu-Tao (艾树涛). Chin. Phys. B, 2006, 15(6): 1364-1369.
No Suggested Reading articles found!