Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050301    DOI: 10.1088/1674-1056/21/5/050301
GENERAL Prev   Next  

Mechanism of micro-waviness induced KH2PO4 crystal laser damage and the corresponding vibration source

Li Ming-Quan(李明全)a), Chen Ming-Jun(陈明君)a)†, An chen-Hui(安晨辉)b), Zhou Lian(周炼)b), Cheng Jian(程健)a), Xiao Yong(肖勇)a), and Jiang Wei(姜伟)a)
a. Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China;
b. Chengdu Fine Optical Engineering Research Center, Chengdu 610041, China
Abstract  The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion. The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a significant influence on the damage threshold. In this paper, the influence of micro-waviness on the damage threshold of the KH2PO4 crystal and the chief sources introducing the micro-waviness are analysed based on the combination of the Fourier modal theory and the power spectrum density method. Research results indicate that among the sub-wavinesses with different characteristic spatial frequencies there exists the most dangerous frequency which greatly reduces the damage threshold, although it may not occupy the largest proportion in the original surface. The experimental damage threshold is basically consistent with the theoretical calculation. For the processing parameters used, the leading frequency of micro-waviness which causes the damage threshold to decrease is between 350-1 μm-1 and 30-1 μm-1, especially between 90-1 μm-1 and 200-1 μm-1. Based on the classification study of the time frequencies of micro-waviness, we find that the axial vibration of the spindle is the chief source introducing the micro-waviness, nearly all the leading frequencies are related to the practical spindle frequency (about 6.68 Hz, 400 r/min) and a special middle frequency (between 1.029 Hz and 1.143 Hz).
Keywords:  laser induced damage threshold      micro-waviness      Fourier modal theory      power spectrum density  
Received:  14 March 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  03.50.Kk (Other special classical field theories)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.70.Mp (Nonlinear optical crystals)  
  42.79.Nv (Optical frequency converters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50875066).

Cite this article: 

Li Ming-Quan(李明全), Chen Ming-Jun(陈明君), An chen-Hui(安晨辉), Zhou Lian(周炼), Cheng Jian(程健), Xiao Yong(肖勇), and Jiang Wei(姜伟) Mechanism of micro-waviness induced KH2PO4 crystal laser damage and the corresponding vibration source 2012 Chin. Phys. B 21 050301

[1] Moses E I and Meier W R 2008 Fusion Engineering and Design 83 997
[2] Negres R A, Kucheyev S O, Mange P D, Bostedt C, Buuren T V, Nelson A J and Demos S J 2005 Appl. Phys. Lett. 86 171107
[3] Tang Z Y, Yang J L, Wen S H, Wang G X, Guo Y Z, Yang H Q and Ma C 1999 Acta Phys. Sin. 48 913 (in Chinese)
[4] Carr C W, Feit M D, Johnson M A and Rubenchik A M 2006 Appl. Phys. Lett. 89 131901
[5] Paul D M, Negres R A, Radousky H B and Demos H G 2006 Opt. Eng. 45 104205
[6] Wang K P, Fang C S, Zhang J X, Sun X, Wang S L, Gu Q T, Zhao X and Wang B 2006 Journal of Crystal Growth 287 478
[7] Wang J H, Chen M J and Dong S 2005 Opto-Electronic Engineering 32 67 (in Chinese)
[8] Chen M J, Jiang W and Li M Q 2010 Chin. Phys. B 19 064203
[9] Chen M J, Li M Q, Jiang W and Xu Q 2010 J. Appl. Phys. 108 043109
[10] Zhou C H and Li L F 2004 J. Opt. A 6 43
[11] Yao X, Gao F H, Li J F, Zhang Y X, Wen S L and Guo Y K 2008 Acta Phys. Sin. 57 4891 (in Chinese)
[12] Bai B F and Li L F 2006 Opt. Commun. 262 140
[13] Bayanheshig, Qi X D and Tang Y G 2003 Acta Phys. Sin. 52 1157 (in Chinese)
[14] Li L F 1993 J. Opt. Soc. Am. A 10 2581
[15] Li L F 1998 J. Opt. Soc. Am. A 13 1313
[16] Fu K X, Zhang D Y, Wang Z H, Zhang Q Z and Zhang J 1998 Acta Phys. Sin. 47 1278 (in Chinese)
[17] Fu K X, Wang Z H, Zhang D Y, Zhang J and Zhang Q Z 1989 Science in China Series A:Mathematics 42 636 (in Chinese)
[18] Ma J Y, Liu S J, Jin Y X, Xu C, Shao J D and Fan Z X 2008 Opt. Commun. 281 3295
[19] Elson J M and Bennett J M 1995 Appl. Opt. 34 201
[20] Lawson J K, Aikens D M, Englishjr R E and Wolfe C R 1996 Proc. SPIE 2775 345
[21] Zhang R Z, Cai B W, Yang C L, Xu Q and Gu Y Y 2000 Proc. SPIE 4231 295
[22] Zahouani H, Mezghani S, Vargiolu R and Dursapt M 2008 Wear 264 480
[23] Jiang X Q, Zeng W H, Scott P, Ma J W and Blunt L 2008 Wear 264 428
[24] Hatem K, Marc B and Philippe R 2005 International Journal of Machine Tools & Manufacture 45 841
[25] Wang J H, Dong S, Wang H X, Chen M J, Zong W J and Zhang L J 2007 Key Engineering Materials 339 78
[26] Chen M J, Pang Q L, Wang J H and Cheng K 2008 International Journal of Machine Tools & Manufacture 48 905
[27] An C H, Wang J, Zhang F H, Xu Q and Chen D J 2010 Nanotechnology and Precision Engineering 8 439
[1] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[2] Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction
Wang Zhi-Yun (汪志云), Chen Pei-Jie (陈培杰), Zhang Liang-Ying (张良英). Chin. Phys. B, 2015, 24(5): 059801.
[3] Extraction and verification of coherent structures in near-wall turbulence
Hu Hai-Bao (胡海豹), Du Peng (杜鹏), Huang Su-He (黄苏和), Wang Ying (王鹰). Chin. Phys. B, 2013, 22(7): 074703.
[4] Study of the near-field modulation property of microwaviness on a KH2PO4 crystal surface
Chen Ming-Jun(陈明君), Jiang Wei(姜伟), Li Ming-Quan(李明全), and Chen Kuan-Neng(陈宽能). Chin. Phys. B, 2010, 19(6): 064203.
No Suggested Reading articles found!