SPECIAL TOPIC — Quantum computing and quantum sensing |
Next
|
|
|
A nanosecond level current pulse capture taper optical fiber probe based on micron level nitrogen-vacancy color center diamond |
Yuchen Bian(卞雨辰)1, Yangfan Mao(毛扬帆)2, Honghao Chen(陈鸿浩)2, Shiyu Ge(葛仕宇)2, Wentao Lu(卢文韬)1, Chengkun Wang(王成坤)2, Sihan An(安思瀚)2, and Guanxiang Du(杜关祥)1,† |
1 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210000, China; 2 College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, China |
|
|
Abstract This work demonstrates a micron-sized nanosecond current pulse probe using a quantum diamond magnetometer. A micron-sized diamond crystal affixed to a fiber tip is integrated on the end of a conical waveguide. We demonstrate real-time visualization of a single 100 nanosecond pulse and discrimination of two pulse trains of different frequencies with a coplanar waveguide and a home-made PCB circuit. This technique finds promising applications in the display of electronic stream and can be used as a pulse discriminator to simultaneously receive and demodulate multiple pulse frequencies. This method of detecting pulse current is expected to provide further detailed analysis of the internal working state of the chip.
|
Received: 27 July 2024
Revised: 28 August 2024
Accepted manuscript online: 10 September 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.67.-a
|
(Quantum information)
|
|
02.20.Uw
|
(Quantum groups)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB2012600). |
Corresponding Authors:
Guanxiang Du
E-mail: duguanxiang@njupt.edu.cn
|
Cite this article:
Yuchen Bian(卞雨辰), Yangfan Mao(毛扬帆), Honghao Chen(陈鸿浩), Shiyu Ge(葛仕宇), Wentao Lu(卢文韬), Chengkun Wang(王成坤), Sihan An(安思瀚), and Guanxiang Du(杜关祥) A nanosecond level current pulse capture taper optical fiber probe based on micron level nitrogen-vacancy color center diamond 2024 Chin. Phys. B 33 120301
|
[1] Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C and Jelezko F 2011 Nat. Phys. 7 459 [2] Glenn D R, Bucher D B, Lee J, Lukin M D, Park H and Walsworth R L 2018 Nature 555 351 [3] Kehayias P, Levine E V, Basso L, Henshaw J, Ziabari M S, Titze M, Haltli R, Okoro J, Tibbetts D R, Udoni D M, Bielejec E, Lilly M P, Lu T M, Schwindt P D D and Mounce A M 2022 Phys. Rev. Applied 17 014021 [4] Sengottuvel S, Mrozek M, Sawczak M, Głowacki J M, Ficek M, Gawlik W and Wojciechowsk A M 2022 Scientific Reports 12 17997 [5] Nowodzinski A, Chipaux M, Toraille L, Jacques V, Roch J F and Debuisschert T 2015 Microelectronics Reliability 55 1549 [6] Su Y C and Huang S Y 2022 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 2761 [7] Heinrich H K 1990 IBM Journal of Research and Development 34 162 [8] Ju Z P, He M T, Lin J J, Zhu J, Wu B T and Wu E 2022 Results in Physics 40 105874 [9] Turner M J, Langellier N, Bainbridge R, Walters D, Meesala S, Babinec T M, Kehayias P, Yacoby A, Hu E, Lončar M, Walsworth R L and Levine E V 2020 Phys. Rev. Applied 14 014097 [10] Gruber A, Draäbenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C V 1997 Science 276 2012 [11] Ito K and Xiong K 2000 IEEE Transactions on Automatic Control 45 910 [12] Saijo S, Matsuzaki Y, Saito S, Yamaguchi T, Hanano I, Watanabe H, Mizuochi N and Ishi-Hayase J 2018 Appl. Phys. Lett. 113 082405 [13] Balasubramanian G, Chan I. Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, R P Hemmer, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648 [14] Shi Z Y, Gao W, Wang Q, Guo H, Tang J, Li Z H, Wen H F, Ma Z M and Liu J 2023 Chin. Phys. B 32 070704 [15] Shao L B, Zhang M, Markham M, Edmonds A M and Lončar M 2016 Phys. Rev. Applied 6 064008 [16] Bai R X, Yang F, Liu P, Gao T, Zhou L, Yin X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003 [17] Robledo L, Bernien H, Sar T V D and Hanson R 2011 New J. Phys. 13 025013 [18] Gupta A, Hacquebard L and Childress L 2016 J. Opt. Soc. Am. B 33 B28 [19] Magaletti S, Mayer L, Roch J and Debuisschert T 2024 New J. Phys. 26 023020 [20] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004 [21] Lin S Z, Wang Q, Guo H, Wen H F, Li Z H, Tang J, Ma Z and Liu J 2021 Laser Phys. Lett. 18 115201 [22] Liu Y K, Liu Z H, Li Y, Ma Z M, Li Z H, Wen H F, Guo H, Tang J, Li Y J and Liu J 2024 IEEE Transactions on Instrumentation and Measurement 73 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|