ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Capture behavior of self-propelled particles into a hexatic ordering obstacle |
Jing-Yi Li(李静怡), Jin-Lei Shi(石金蕾), Ying-Ying Wang(王英英), Jun-Xing Pan(潘俊星)†, and Jin-Jun Zhang(张进军)‡ |
School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030032, China |
|
|
Abstract Computer simulations are utilized to investigate the dynamic behavior of self-propelled particles (SPPs) within a complex obstacle environment. The findings reveal that SPPs exhibit three distinct aggregation states within the obstacle, each contingent on specific conditions. A phase diagram outlining the aggregation states concerning self-propulsion conditions is presented. The results illustrate a transition of SPPs from a dispersion state to a transition state as persistence time increases within the obstacle. Conversely, as the driving strength increases, self-propelled particles shift towards a cluster state. A systematic exploration of the interplay between driving strength, persistence time, and matching degree on the dynamic behavior of self-propelled particles is conducted. Furthermore, an analysis is performed on the spatial distribution of SPPs along the $y$-axis, capture rate, maximum capture probability, and mean-square displacement. The insights gained from this research make valuable contributions to understanding the capture and collection of active particles.
|
Received: 15 July 2024
Revised: 10 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
45.50.-j
|
(Dynamics and kinematics of a particle and a system of particles)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
05.40.Jc
|
(Brownian motion)
|
|
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202303021212148 and 202103021223245). |
Corresponding Authors:
Jun-Xing Pan, Jin-Jun Zhang
E-mail: panjx@sxnu.edu.cn;zhangjinjun@sxnu.edu.cn
|
Cite this article:
Jing-Yi Li(李静怡), Jin-Lei Shi(石金蕾), Ying-Ying Wang(王英英), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军) Capture behavior of self-propelled particles into a hexatic ordering obstacle 2024 Chin. Phys. B 33 124501
|
[1] Makris N C, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godø O R, Nero R W and Jech J M 2009 Science 323 1734 [2] Becco Ch, Vandewalle N, Delcourt J and Poncin P 2006 Phys. Stat. Mech. Its Appl. 367 487 [3] Sarkar D, Gompper G and Elgeti J 2021 Commun Phys. 4 36 [4] Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424 [5] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006 [6] Surrey T, Nédélec F, Leibler S and Karsenti E 2001 Science 292 1167 [7] Ramaswamy S 2010 Ann. Rev. Condensed Matter Phys. 1 323 [8] Reynolds C W 1987 SIGGRAPH Comput. Graph 21 25 [9] Schweitzer F 2003 Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Berlin: Springer-Verlag) pp. 51-131 [10] Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103 [11] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219 [12] Fily Y and Cristina Marchetti M 2012 Phys. Rev. Lett. 108 235702 [13] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702 [14] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701 [15] Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G and Pagonabarraga I 2018 Phys. Rev. Lett. 121 098003 [16] Tang Y W, Chen S Y, Bowick M J and Bi D 2024 Phys. Rev. Lett. 132 218402 [17] Peruani F, Deutsch A and Bär M 2006 Phys. Rev. E 74 030904 [18] Pilla R T and Mani E 2022 J. Phys. Condens. Matter 34 245101 [19] Son K, Choe Y, Kwon E, Rigon L G, Baek Y and Kim H Y 2024 Soft Matter 20 2777 [20] Fares J, Fares M Y, Khachfe H H, Salhab H A and Fares Y 2020 Signal Transduct. Target. Ther. 5 28 [21] Hiraki H L, Matera D L, Wang W Y, Prabhu E S, Zhang Z, Midekssa F, Argento A E, Buschhaus J M, Humphries B A, Luker G D, PenaFrancesch A and Baker B M 2023 Acta Biomater. 163 378 [22] Mierke C T 2019 Rep. Prog. Phys. Phys. Soc. G. B. 82 064602 [23] Wu J S, Sheng S R, Liang X H and Tang Y L 2017 Future Oncol. 13 991 [24] Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2002 Molecular Biology of the Cell (4th edn.) (New York: Garland Science) pp. 18-249 [25] Singh A, Soler J A, Lauer J, Grill S W, Jahnel M, Zerial M and Thutupalli S 2023 Nat. Phys. 19 1185 [26] Potiguar F Q, Farias G A and Ferreira W P 2014 Phys. Rev. E 90 012307 [27] Shi S J, Li H S, Feng G Q, Tian W D and Chen K 2020 Phys. Chem. Chem. Phys. 22 14052 [28] Qian B S, Tian W D and Chen K 2021 Phys. Chem. Chem. Phys. 23 20388 [29] Kim W K, Chudoba R, Milster S, Roa R, Kanduč M and Dzubiella J 2020 Soft Matter 16 8144 [30] Zhu W J, Huang X Q and Ai B Q 2018 Chin. Phys. B 27 080504 [31] Kim Y, Joo S, Kim W K K and Jeon J H 2022 Macromolecules 55 7136 [32] Cho H W, Kim H, Sung B J and Kim J S 2020 Polymers 12 2067 [33] Lu Y and Hu G H 2021 Soft Matter 17 6374 [34] Shan W J, Zhang F, Tian W D and Chen K 2019 Soft Matter 15 4761 [35] Ning L H, Liu P, Ye F F, Yang M C and Chen K 2021 Phys. Rev. E 103 022608 [36] Liu P, Ning L H, Zong Y W, Ye F F, Yang M C and Chen K 2022 Phys. Rev. Lett. 129 018002 [37] Shaebani M R, Wysocki A, Winkler R G, Gompper G and Rieger H 2020 Nat. Rev. Phys. 2 181 [38] Martí-Gómez A, Levis D, Díaz-Guilera A and Pagonabarraga I 2018 Soft Matter 14 2610 [39] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502 [40] Zhou Y J, Wang T H, Lei X K and Peng X G 2024 Chaos Solitons Fractals 180 114596 [41] Nagai K H, Sumino Y, Montagne R, Aranson I S and Chaté H 2015 Phys. Rev. Lett. 114 168001 [42] Wang W 2023 J. Am. Chem. Soc. 145 27185 [43] Hrishikesh B and Mani E 2023 Soft Matter 19 225 [44] Ma Z, Lei Q L and Ni R 2017 Soft Matter 13 8940 [45] Pan J X, Wei H, Qi M J, Wang H F, Zhang J J, Tian W D and Chen K 2020 Soft Matter 16 5545 [46] Weeks J D, Chandler D and Andersen H C 1971 J. Chem. Phys. 55 5422 [47] Di Leonardo R, Angelani L, Dell’Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. USA 107 9541 [48] VERLET L 1968 Phys. Rev. 165 201 [49] Du Y F, Jiang H J and Hou Z H 2019 Soft Matter 15 2020 [50] Kumar P and Chakrabarti R 2023 Phys. Chem. Chem. Phys. 25 1937 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|