Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 124501    DOI: 10.1088/1674-1056/ad84c6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Capture behavior of self-propelled particles into a hexatic ordering obstacle

Jing-Yi Li(李静怡), Jin-Lei Shi(石金蕾), Ying-Ying Wang(王英英), Jun-Xing Pan(潘俊星)†, and Jin-Jun Zhang(张进军)‡
School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030032, China
Abstract  Computer simulations are utilized to investigate the dynamic behavior of self-propelled particles (SPPs) within a complex obstacle environment. The findings reveal that SPPs exhibit three distinct aggregation states within the obstacle, each contingent on specific conditions. A phase diagram outlining the aggregation states concerning self-propulsion conditions is presented. The results illustrate a transition of SPPs from a dispersion state to a transition state as persistence time increases within the obstacle. Conversely, as the driving strength increases, self-propelled particles shift towards a cluster state. A systematic exploration of the interplay between driving strength, persistence time, and matching degree on the dynamic behavior of self-propelled particles is conducted. Furthermore, an analysis is performed on the spatial distribution of SPPs along the $y$-axis, capture rate, maximum capture probability, and mean-square displacement. The insights gained from this research make valuable contributions to understanding the capture and collection of active particles.
Keywords:  self-propelled particles      complex obstacle      capture behavior  
Received:  15 July 2024      Revised:  10 September 2024      Accepted manuscript online:  09 October 2024
PACS:  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.Jc (Brownian motion)  
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202303021212148 and 202103021223245).
Corresponding Authors:  Jun-Xing Pan, Jin-Jun Zhang     E-mail:  panjx@sxnu.edu.cn;zhangjinjun@sxnu.edu.cn

Cite this article: 

Jing-Yi Li(李静怡), Jin-Lei Shi(石金蕾), Ying-Ying Wang(王英英), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军) Capture behavior of self-propelled particles into a hexatic ordering obstacle 2024 Chin. Phys. B 33 124501

[1] Makris N C, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godø O R, Nero R W and Jech J M 2009 Science 323 1734
[2] Becco Ch, Vandewalle N, Delcourt J and Poncin P 2006 Phys. Stat. Mech. Its Appl. 367 487
[3] Sarkar D, Gompper G and Elgeti J 2021 Commun Phys. 4 36
[4] Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
[5] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[6] Surrey T, Nédélec F, Leibler S and Karsenti E 2001 Science 292 1167
[7] Ramaswamy S 2010 Ann. Rev. Condensed Matter Phys. 1 323
[8] Reynolds C W 1987 SIGGRAPH Comput. Graph 21 25
[9] Schweitzer F 2003 Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Berlin: Springer-Verlag) pp. 51-131
[10] Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103
[11] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219
[12] Fily Y and Cristina Marchetti M 2012 Phys. Rev. Lett. 108 235702
[13] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702
[14] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[15] Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G and Pagonabarraga I 2018 Phys. Rev. Lett. 121 098003
[16] Tang Y W, Chen S Y, Bowick M J and Bi D 2024 Phys. Rev. Lett. 132 218402
[17] Peruani F, Deutsch A and Bär M 2006 Phys. Rev. E 74 030904
[18] Pilla R T and Mani E 2022 J. Phys. Condens. Matter 34 245101
[19] Son K, Choe Y, Kwon E, Rigon L G, Baek Y and Kim H Y 2024 Soft Matter 20 2777
[20] Fares J, Fares M Y, Khachfe H H, Salhab H A and Fares Y 2020 Signal Transduct. Target. Ther. 5 28
[21] Hiraki H L, Matera D L, Wang W Y, Prabhu E S, Zhang Z, Midekssa F, Argento A E, Buschhaus J M, Humphries B A, Luker G D, PenaFrancesch A and Baker B M 2023 Acta Biomater. 163 378
[22] Mierke C T 2019 Rep. Prog. Phys. Phys. Soc. G. B. 82 064602
[23] Wu J S, Sheng S R, Liang X H and Tang Y L 2017 Future Oncol. 13 991
[24] Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2002 Molecular Biology of the Cell (4th edn.) (New York: Garland Science) pp. 18-249
[25] Singh A, Soler J A, Lauer J, Grill S W, Jahnel M, Zerial M and Thutupalli S 2023 Nat. Phys. 19 1185
[26] Potiguar F Q, Farias G A and Ferreira W P 2014 Phys. Rev. E 90 012307
[27] Shi S J, Li H S, Feng G Q, Tian W D and Chen K 2020 Phys. Chem. Chem. Phys. 22 14052
[28] Qian B S, Tian W D and Chen K 2021 Phys. Chem. Chem. Phys. 23 20388
[29] Kim W K, Chudoba R, Milster S, Roa R, Kanduč M and Dzubiella J 2020 Soft Matter 16 8144
[30] Zhu W J, Huang X Q and Ai B Q 2018 Chin. Phys. B 27 080504
[31] Kim Y, Joo S, Kim W K K and Jeon J H 2022 Macromolecules 55 7136
[32] Cho H W, Kim H, Sung B J and Kim J S 2020 Polymers 12 2067
[33] Lu Y and Hu G H 2021 Soft Matter 17 6374
[34] Shan W J, Zhang F, Tian W D and Chen K 2019 Soft Matter 15 4761
[35] Ning L H, Liu P, Ye F F, Yang M C and Chen K 2021 Phys. Rev. E 103 022608
[36] Liu P, Ning L H, Zong Y W, Ye F F, Yang M C and Chen K 2022 Phys. Rev. Lett. 129 018002
[37] Shaebani M R, Wysocki A, Winkler R G, Gompper G and Rieger H 2020 Nat. Rev. Phys. 2 181
[38] Martí-Gómez A, Levis D, Díaz-Guilera A and Pagonabarraga I 2018 Soft Matter 14 2610
[39] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502
[40] Zhou Y J, Wang T H, Lei X K and Peng X G 2024 Chaos Solitons Fractals 180 114596
[41] Nagai K H, Sumino Y, Montagne R, Aranson I S and Chaté H 2015 Phys. Rev. Lett. 114 168001
[42] Wang W 2023 J. Am. Chem. Soc. 145 27185
[43] Hrishikesh B and Mani E 2023 Soft Matter 19 225
[44] Ma Z, Lei Q L and Ni R 2017 Soft Matter 13 8940
[45] Pan J X, Wei H, Qi M J, Wang H F, Zhang J J, Tian W D and Chen K 2020 Soft Matter 16 5545
[46] Weeks J D, Chandler D and Andersen H C 1971 J. Chem. Phys. 55 5422
[47] Di Leonardo R, Angelani L, Dell’Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. USA 107 9541
[48] VERLET L 1968 Phys. Rev. 165 201
[49] Du Y F, Jiang H J and Hou Z H 2019 Soft Matter 15 2020
[50] Kumar P and Chakrabarti R 2023 Phys. Chem. Chem. Phys. 25 1937
[1] Passive particles driven by self-propelled particle: The wake effect
Kai-Xuan Zheng(郑凯选), Jing-Wen Wang(汪静文), Shi-Feng Wang(王世锋), and De-Ming Nie(聂德明). Chin. Phys. B, 2024, 33(4): 044501.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[4] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
No Suggested Reading articles found!