Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110401    DOI: 10.1088/1674-1056/ad7af9
RAPID COMMUNICATION Prev   Next  

Model on picometer-level light gravitational delay in the GRACE Follow-On-like missions

Jin-Zhuang Dong(董金壮), Wei-Sheng Huang(黄玮圣), Cheng-Gang Qin(秦成刚)†, Yu-Jie Tan(谈玉杰)‡, and Cheng-Gang Shao(邵成刚)§
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Laser interferometry plays a crucial role in laser ranging for high-precision space missions such as GRACE (Gravity Recovery and Climate Experiment) Follow-On-like missions and gravitational wave detectors. For such accuracy of modern space missions, a precise relativistic model of light propagation is required. With the post-Newtonian approximation, we utilize the Synge world function method to study the light propagation in the Earth's gravitational field, deriving the gravitational delays up to order c4. Then, we investigate the influences of gravitational delays in three inter-satellite laser ranging techniques, including one-way ranging, dual one-way ranging, and transponder-based ranging. By combining the parameters of Kepler orbit, the gravitational delays are expanded up to the order of e2 (e is the orbital eccentricity). Finally, considering the GRACE Follow-On-like missions, we estimate the gravitational delays to the level of picometer. The results demonstrate some high-order gravitational and coupling effects, such as c4-order gravitational delays and coupling of Shapiro and beat frequency, which may be non-negligible for higher precision laser ranging in the future.
Keywords:  classical general relativity      post-Newtonian approximation      phase shifting interferometry  
Received:  20 June 2024      Revised:  14 August 2024      Accepted manuscript online:  14 September 2024
PACS:  04.20.-q (Classical general relativity)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  42.87.Bg (Phase shifting interferometry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12247150, 12305062, 12175076, and 11925503), the Post-doctoral Science Foundation of China (Grant No. 2022M721257), and the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302001).
Corresponding Authors:  Cheng-Gang Qin, Yu-Jie Tan, Cheng-Gang Shao     E-mail:  cgqin@hust.edu.cn;yjtan@hust.edu.cn;cgshao@hust.edu.cn

Cite this article: 

Jin-Zhuang Dong(董金壮), Wei-Sheng Huang(黄玮圣), Cheng-Gang Qin(秦成刚), Yu-Jie Tan(谈玉杰), and Cheng-Gang Shao(邵成刚) Model on picometer-level light gravitational delay in the GRACE Follow-On-like missions 2024 Chin. Phys. B 33 110401

[1] Abich K, Abramovici A, Amparan B, et al. 2019 Phys. Rev. Lett. 123 031101
[2] Amaro-Seoane P, Audley H, Babak S, Baker J, et al. 2017 arXiv: 1702.00786
[3] Wu J, Li J and Jiang Q Q 2023 Chin. Phys. B 32 090401
[4] Poncin-Lafitte C Le, Linet B and Teyssandier P 2004 Classical and Quantum Gravity 21 4463
[5] Thorne K S, Misner C W and Wheeler J A 2000 Gravitation (Freeman San Francisco) p. 265
[6] Bertotti B, Iess L and Tortora P 2003 Nature 425 374
[7] Turyshev S G, Shao M, Girerd A and Lane B 2009 Int. J. Mod. Phys. D 18 1025
[8] Tso R and Bailey Q G 2010 Phys. Rev. D 84 085025
[9] Kostelecký V A and Tasson J D 2011 Phys. Rev. D 83 016013
[10] Qin C G, Ke J, Li Q, Chen Y F, Luo J, Tan Y J and Shao C G 2023 Classical and Quantum Gravity 40 205005
[11] eLISA Consortium, et al. 2013 ESA: Paris, Freance 2013 1
[12] Turyshev S G, Sazhin M V and Toth V T 2014 Phys. Rev. D 89 105029
[13] Turyshev S G, Toth V T and Sazhin M V 2013 Phys. Rev. D 87 024020
[14] Klioner S and Kopeikin S 1992 Astron. J. 104 897
[15] Linet B and Teyssandier P 2013 Classical and Quantum Gravity 30 175008
[16] Kopeikin S and Mashhoon B 2002 Phys. Rev. D 65 064025
[17] He G and Lin W 2016 Phys. Rev. D 94 063011
[18] Jiang C and Lin W 2018 Phys. Rev. D 97 024045
[19] Ghosh S and Bhattacharyya A 2022 J. Cosmol. Astropart. Phys. 2022 006
[20] Teyssandier P 1978 Phys. Rev. D 18 1037
[21] Zschocke S 2015 Phys. Rev. D 92 063015
[22] Zschocke S 2016 Phys. Rev. D 93 103010
[23] Zschocke S 2016 Phys. Rev. D 94 124007
[24] Teyssandier P and Le Poncin-Lafitte C 2008 Classical and Quantum Gravity 25 145020
[25] Le Poncin-Lafitte C and Teyssandier P 2008 Phys. Rev. D 77 044029
[26] Hees A, Bertone S and Le Poncin-Lafitte C 2014 Phys. Rev. D 89 064045
[27] Teyssandier P 2022 arXiv:2212.06671
[28] Linet B and Teyssandier P 2016 Phys. Rev. D 93 044028
[29] Qin C G and Shao C G 2017 Phys. Rev. D 96 024003
[30] Deng X M and Xie Y 2012 Phys. Rev. D 86 044007
[31] Qin C G, Tan Y J, Chen Y F and Shao C G 2019 Phys. Rev. D 100 064063
[32] Hees A, Bertone S and Le Poncin-Lafitte C 2014 Phys. Rev. D 90 084020
[33] Jiang C, Yang B and Lin W 2023 arXiv:2306.10129
[34] Soffel M, Klioner S A, Petit G, et al. 2003 Astronom. J. 126 2687
[35] Linet B and Teyssandier P 2002 Phys. Rev. D 66 024045
[36] Müller V 2017 Hannover: Gottfried Wilhelm Leibniz Universität Hannover
[1] Post-post-Newtonian deflection of light ray in multiple systems with PPN parameters
Gong Yan-Xiang(宫衍香) and Wu Xiao-Mei(吴晓梅) . Chin. Phys. B, 2011, 20(2): 020403.
No Suggested Reading articles found!