1 Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science&Technology, Hebei University, Baoding 071002, China; 2 Department of Physics, Yantai University, Yantai 264005, China; 3 Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
Abstract We propose a method of complex-amplitude Fourier single-pixel imaging (CFSI) with coherent structured illumination to acquire both the amplitude and phase of an object. In the proposed method, an object is illustrated by a series of coherent structured light fields, which are generated by a phase-only spatial light modulator, the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector. Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform. We experimentally implemented this CFSI with several different types of objects. The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration. Thus, it might find broad applications in optical metrology and biomedical science.
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2022201039 and F2019201446), the MultiYear Research Grant of University of Macau, China (Grant No. MYRG2020-00082-IAPME), the Science and Technology Development Fund from Macau SAR (FDCT), China (Grant No. 0062/2020/AMJ), the Advanced Talents Incubation Program of the Hebei University (Grant No. 8012605), and the National Natural Science Foundation of China (Grant Nos. 11204062, 61774053, and 11674273).
Hong-Yun Hou(侯红云), Ya-Nan Zhao(赵亚楠), Jia-Cheng Han(韩佳成), De-Zhong Cao(曹 德忠),Su-Heng Zhang(张素恒), Hong-Chao Liu(刘宏超), and Bao-Lai Liang(梁宝来) Complex-amplitude Fourier single-pixel imaging via coherent structured illumination 2023 Chin. Phys. B 32 064201
[1] Zernike F1942 Physica9 686 [2] Preza, C, Snyder, D L and Conchello J A 1999 J. Opt. Soc. Am. A16 2185 [3] Platt B C and Shack R 2001 Journal of Refractive Surgery17 S573 [4] Miao J, Charalambous P, Kirz J and Sayre D1999 Nature400 342 [5] Fu J and Li P2013 Chin. Phys. B22 014204 [6] Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T and Depeursinge C2005 Opt. Lett.30 468 [7] Li T, Lei W X, Sun X K, Dong J, Tao Y and Shi Y S2021 Chin. Phys. B30 094201 [8] Zheng G, Horstmeyer R and Yang C2013 Nat. Photon.7 739 [9] Zhang D J, Tang Q, Wu T F, Qiu H C, Xu D Q, Li H G, Wang H B, Xiong J and Wang K2014 Appl. Phys. Lett.104 121113 [10] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D2016 Phys. Rev. Lett.117 113901 [11] Zhao Y N, Zhang S H, Cui W L, Cao D Z and Liang B L2021 Journal of Optics23 055603 [12] Zuo C, Li J, Sun J, Fan Y, Zhang J, Lu L, Zhang R, Wang B, Huang L and Chen Q2020 Optics and Lasers in Engineering135 106187 [13] Gibson G M, Johnson S D and Padgett M J2020 Opt. Express28 28190 [14] Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S and Padgett M J2015 Scientific Reports5 10669 [15] Stantchev R I, Yu X, Blu T and Pickwell-MacPherson E2020 Nat. Commun.11 2535 [16] Duan D and Xia Y2021 Opt. Express29 4978 [17] He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A and Chen L M2020 APL Photonics5 056102 [18] Li Z, Suo J, Hu X, Deng C, Fan J and Dai Q2017 Scientific Reports7 41435 [19] Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z and Liang B L2021 Opt. Lett.46 4900 [20] Kirmani A, Venkatraman D, Shin D, Colaço A, Wong F N C, Shapiro J H and Goyal V K2014 Science343 58 [21] Liu X, Shi J, Sun L, Li Y, Fan J and Zeng G2020 Opt. Express28 8132 [22] Sun M J, Edgar M P, Gibson G M, Sun B, Radwell N, Lamb R and Padgett M J2016 Nat. Commun.7 12010 [23] Ma Y, Yin Y, Jiang S, Li X, Huang F and Sun B2021 Optics and Lasers in Engineering140 106532 [24] Li X, Meng X, Yang X, Wang Y, Yin Y, Peng X, He W, Dong G and Chen H2018 Optics and Lasers in Engineering102 106 [25] Wang Y, Liu Q, Wang J and Wang Q H2018 Chin. Phys. B27 034202 [26] Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G and Zhang S2021 Science Advances 7 eabg0363 [27] Lee K and Ahn J2010 Appl. Phys. Lett.97 241101 [28] Horisaki R, Matsui H, Egami R and Tanida J2017 Appl. Opt.56 1353 [29] Horisaki R, Matsui H and Tanida J2017 Appl. Opt.56 4085 [30] Howland G A, Lum D J and Howell J C2014 Opt. Express22 18870 [31] Shin S, Lee K, Baek Y and Park Y2018 Phys. Rev. Applied9 044042 [32] Soldevila F, Durán V, Clemente P, Lancis J and Tajahuerce E2018 Optica5 164 [33] Li M, Bian L, Zheng G, Maiden A, Liu Y, Li Y, Suo J, Dai Q and Zhang J2021 Opt. Lett.46 1624 [34] Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V and Lancis J2013 Opt. Lett.38 2524 [35] Martínez-León L, Clemente P, Mori Y, Climent V, Lancis J and Tajahuerce E2017 Opt. Express25 4975 [36] González H, Martínez-León L, Soldevila F, Araiza-Esquivel M, Lancis J and Tajahuerce E2018 Opt. Express26 20342 [37] Hu X, Zhang H, Zhao Q, Yu P, Li Y and Gong L2019 Appl. Phys. Lett.114 051102 [38] Santos-Amador A, Araiza-Esquivel M, González H, Rodríguez-Cobos A, Tajahuerce E, Martínez-León L, Ramírez-Flores G and Balderas-Navarro R E2021 Appl. Opt.60 6935 [39] Wu D, Luo J, Huang G, Feng Y, Feng X, Zhang R, Shen Y and Li Z2021 Nat. Commun.12 4712 [40] Liu Y, Suo J, Zhang Y and Dai Q2018 Opt. Express26 32451 [41] Liu R, Zhao S, Zhang P, Gao H and Li F2019 Appl. Phys. Lett.114 161901 [42] Zhao S, Liu R, Zhang P, Gao H and Li F2019 Opt. Lett.44 3278 [43] Zhao S, Chen S, Wang X, Liu R, Zhang P, Li H, Gao H and Li F2020 Opt. Lett.45 5990 [44] Liu Y, Yu P, Hu X, Wang Z, Li Y and Gong L2020 Opt. Lett.45 4028 [45] Li X, Sun Y, He Y, Li X and Sun B2021 Signal Processing188 108173 [46] Hou H Y, Zhao Y N, Han J C, Cui S W, Cao D Z, Liu H C, Zhang S H and Liang B L2021 Opt. Express29 41827 [47] Zhang Z, Ma X and Zhong J2015 Nat. Commun.6 6225 [48] Huang J, Shi D, Yuan K, Hu S and Wang Y2018 Opt. Express26 16547 [49] Zhang Z, Liu S, Peng J, Yao M, Zheng G and Zhong J2018 Optica5 315 [50] Liang Z Y, Cheng Z D, Liu Y Y, Yu K K and Hu Y D2019 Chin. Phys. B28 064202 [51] Peng J, Yao M, Huang Z and Zhong J2021 APL Photonics6 046102 [52] Herráez M A, Burton D R, Lalor M J and Gdeisat M A2002 Appl. Opt.41 7437 [53] van der Walt S, Schönberger J L, Nunez-Iglesias J, Boulogne F, Warner J D, Yager N, Gouillart E and Yu T2014 PeerJ2 e453 [54] Zhang Z, Wang X, Zheng G and Zhong J2017 Opt. Express25 19619 [55] Xiao Y, Zhou L and Chen W2019 IEEE Photonics Technology Letters31 845 [56] Phillips D B, Sun M J, Taylor J M, Edgar M P, Barnett S M, Gibson G M and Padgett M J2017 Science Advances3 e1601782 [57] Yoneda N, Saita Y and Nomura T2022 Opt. Express30 18134 [58] Zhao Y N, Hou H Y, Han J C, Cao D Z, Zhang S H, Liu H C and Liang B L 2022 figshare. Dataset
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.