Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits |
Hao-Ran Tao(陶浩然)1,2, Lei Du(杜磊)1,2, Liang-Liang Guo(郭亮亮)1,2, Yong Chen(陈勇)1,2, Hai-Feng Zhang(张海峰)1,2, Xiao-Yan Yang(杨小燕)1,2, Guo-Liang Xu(徐国良)3, Chi Zhang(张 驰)3, Zhi-Long Jia(贾志龙)3, Peng Duan(段鹏)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡ |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
Abstract The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal-air interface, where Nb$_2$O$_5$ is considered the main loss source. Here, we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film. With TiN capping layers, no Nb$_2$O$_5$ forms on the surface of the Nb film. The quality factor $Q_{\rm i}$ of the Nb resonator increases from $5.6\times10^{5}$ to $7.9\times10^{5}$ at low input power and from $6.8\times10^{6}$ to $1.1\times10^{7}$ at high input power. Furthermore, the TiN capping layer also shows good aging resistance in Nb resonator devices, with no significant performance fluctuations after one month of aging. These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.
|
Received: 18 June 2024
Revised: 29 July 2024
Accepted manuscript online: 02 August 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419). |
Corresponding Authors:
Peng Duan, Guo-Ping Guo
E-mail: pengduan@ustc.edu.cn;gpguo@ustc.edu.cn
|
Cite this article:
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平) In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits 2024 Chin. Phys. B 33 090310
|
[1] Murray C E 2021 Mater. Sci. Eng. R Reports 146 100646 [2] Pappas D P, Vissers M R, Wisbey D S, Kline J S and Gao J 2011 IEEE Trans. Appl. Supercond. 21 871 [3] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys. 109 063915 [4] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W and Yu C C 2005 Phys. Rev. Lett. 95 210503 [5] Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis J M and Ustinov A V 2019 npj Quantum Inf. 5 105 [6] Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S and Pappas D P 2012 Appl. Phys. Lett. 100 262605 [7] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim D K, Miloshi X, Rosenberg D, Sevi A, Yoder J L, Dauler E and Oliver W D 2018 Appl. Phys. Lett. 112 262605 [8] Wenner J, Barends R, Bialczak R C, Chen Y, Kelly J, Lucero E, Mariantoni M, Megrant A, O'Malley P J J, Sank D, Vainsencher A, Wang H, White T C, Yin Y, Zhao J, Cleland A N and Martinis J M 2011 Appl. Phys. Lett. 99 1 [9] Lahtinen V and Möttönen M 2020 J. Phys. Condens. Matter 32 405702 [10] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J and Devoret M H 2012 Appl. Phys. Lett. 100 1 [11] He H, Wang W, Liu F, Yuan B and Shan Z 2022 Entropy 24 952 [12] Eun S, Park S H, Seo K, Choi K and Hahn S 2023 J. Phys. D:Appl. Phys. 56 505306 [13] Deng H, Song Z, Gao R, Xia T, Bao F, Jiang X, Ku H S, Li Z, Ma X, Qin J, Sun H, Tang C, Wang T, Wu F, Yu W, Zhang G, Zhang X, Zhou J, Zhu X, Shi Y, Zhao H H and Deng C 2023 Phys. Rev. Appl. 19 024013 [14] Lock E H, Xu P, Kohler T, Camacho L, Prestigiacomo J, Rosen Y J and Osborn K D 2019 IEEE Trans. Appl. Supercond. 29 1 [15] Mergenthaler M, Müller C, Ganzhorn M, Paredes S, Müller P, Salis G, Adiga V P, Brink M, Sandberg M, Hertzberg J B, Filipp S and Fuhrer A 2021 npj Quantum Inf. 7 157 [16] Wang C, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y and Yu H 2022 npj Quantum Inf. 8 3 [17] Zikiy E V, Ivanov A I, Smirnov N S, Moskalev D O, Polozov V I, Matanin A R, Malevannaya E I, Echeistov V V, Konstantinova T G and Rodionov I A 2023 Sci. Rep. 13 15536 [18] Kwon S, Fadavi Roudsari A, Benningshof O W B, Tang Y C, Mohebbi H R, Taminiau I A J, Langenberg D, Lee S, Nichols G, Cory D G and Miao G X 2018 J. Appl. Phys. 124 033903 [19] Dominjon A, Shu S, Kroug M, Noguchi T, Sekimoto Y, Shan W, Sekiguchi S and Nitta T 2019 J. Low Temp. Phys. 194 404 [20] Bruno A, Mengucci P, Mercaldo L V and Lisitskiy M P 2013 Supercond. Sci. Technol. 26 035004 [21] Annunziata A J, Santavicca D F, Frunzio L, Catelani G, Rooks M J, Frydman A and Prober D E 2010 Nanotechnology 21 445202 [22] Altoé M V P, Banerjee A, Berk C, Hajr A, Schwartzberg A, Song C, Ghadeer M A, Aloni S, Elowson M J, Kreikebaum J M, Wong E K, Griffin S, Rao S, Weber-Bargioni A, Minor A M, Santiago D I, Cabrini S, Siddiqi I and Ogletree D F 2020 arXiv:2012.07604 [23] Hu Z W and Qiu X G 2023 Chin. Phys. B 32 037401 [24] Liu B L, Liu D, Yao M, Jin J D, Wang Z, Li J, Shi S C, Chekushkin A, Fominsky M, Filippenko L and Koshelets V 2024 Chin. Phys. B 33 058501 [25] Sebastian J, Seidman D, Yoon K, Bauer P, Reid T, Boffo C and Norem J 2006 Physica C 441 70 [26] Delheusy M, Stierle A, Kasper N, Kurta R P, Vlad A, Dosch H, Antoine C, Resta A, Lundgren E and Andersen J 2008 Appl. Phys. Lett. 92 101911 [27] Romanenko A and Schuster D I 2017 Phys. Rev. Lett. 119 264801 [28] Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601 [29] Proslier T, Zasadzinski J, Moore J, Pellin M, Elam J, Cooley L, Antoine C, Norem J and Gray K E 2008 Appl. Phys. Lett. 93 10 [30] Semione G D L, Pandey A D, Tober S, Pfrommer J, Poulain A, Drnec J, Schütz G, Keller T F, Noei H, Vonk V, Foster B and Stierle A 2019 Phys. Rev. Accel. Beams 22 103102 [31] Bal M, Murthy A A, Zhu S, Crisa F, You X, Huang Z, Roy T, Lee J, van Zanten D, Pilipenko R, Nekrashevich I, Lunin A, Bafia D, Krasnikova Y, Kopas C J, Lachman E O, Miller D, Mutus J Y, Reagor M J, Cansizoglu H, Marshall J, Pappas D P, Vu K, Yadavalli K, Oh J S, Zhou L, Kramer M J, Lecocq F, Goronzy D P, Torres-Castanedo C G, Pritchard P G, Dravid V P, Rondinelli J M, Bedzyk M J, Hersam M C, Zasadzinski J, Koch J, Sauls J A, Romanenko A and Grassellino A 2024 npj Quantum Inf. 10 43 [32] Foxen B, Mutus J Y, Lucero E, Graff R, Megrant A, Chen Y, Quintana C, Burkett B, Kelly J, Jeffrey E, Yang Y, Yu A, Arya K, Barends R, Chen Z, Chiaro B, Dunsworth A, Fowler A, Gidney C, Giustina M, Huang T, Klimov P, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C and Martinis J M 2018 Quantum Sci. Technol. 3 014005 [33] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrøm C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett. 100 113510 [34] Probst S, Song F B, Bushev P A, Ustinov A V and Weides M 2015 Rev. Sci. Instrum. 86 024706 [35] Verjauw J, Potočnik A, Mongillo M, Acharya R, Mohiyaddin F, Simion G, Pacco A, Ivanov T, Wan D, Vanleenhove A, Souriau L, Jussot J, Thiam A, Swerts J, Piao X, Couet S, Heyns M, Govoreanu B and Radu I 2021 Phys. Rev. Appl. 16 014018 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|