Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 078701    DOI: 10.1088/1674-1056/ad4327
RAPID COMMUNICATION Prev   Next  

Disorder-to-order transition induced by spontaneous cooling regulation in robotic active matter

Shuaixu Hou(侯帅旭)1,†, Gao Wang(王高)2,3,†, Xingyu Ma(马星宇)4, Chuyun Wang(汪楚云)5, Peng Wang(王鹏)5, Huaicheng Chen(陈怀城)2, Liyu Liu(刘雳宇)1,‡, and Jing Wang(王璟)2,§
1 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
2 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China;
5 Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, China
Abstract  In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustment. However, in active matter systems, the self-propulsion nature of active particles endows the systems with the ability to induce unique collective-state transitions by spontaneously regulating individual properties to alter the overall states. Based on an innovative robot-swarm experimental system, we demonstrate a field-driven active matter model capable of modulating individual motion behaviors through interaction with a recoverable environmental resource field by the resource perception and consumption. In the simulated model, by gradually reducing the individual resource-conversion coefficient over time, this robotic active matter can spontaneously decrease the overall level of motion, thereby actively achieving a regulation behavior like the cooling-down control. Through simulation calculations, we discover that the spatial structures of this robotic active matter convert from disorder to order during this process, with the resulting ordered structures exhibiting a high self-adaptability on the geometry of the environmental boundaries.
Keywords:  active matter      robot swarm      collective-state transitions      environmental self-adaptability  
Received:  01 March 2024      Revised:  09 April 2024      Accepted manuscript online:  25 April 2024
PACS:  87.15.Zg (Phase transitions)  
  89.75.Fb (Structures and organization in complex systems)  
  05.65.+b (Self-organized systems)  
  87.85.St (Robotics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174041), China Postdoctoral Science Foundation (Grant No. 2022M723118), and the Seed Grants from the Wenzhou Institute, University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002).
Corresponding Authors:  Liyu Liu, Jing Wang     E-mail:  lyliu@cqu.edu.cn;wangjing@ucas.ac.cn

Cite this article: 

Shuaixu Hou(侯帅旭), Gao Wang(王高), Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Peng Wang(王鹏), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Jing Wang(王璟) Disorder-to-order transition induced by spontaneous cooling regulation in robotic active matter 2024 Chin. Phys. B 33 078701

[1] Zhang H P, Shi X Q and Yang M C 2022 Physics 51 217 (in Chinese)
[2] Ramaswamy S 2017 J. Stat. Mech. 2017 054002
[3] Needleman D and Dogic Z 2017 Nat. Rev. Mater. 2 17048
[4] Cavagna A and Giardina I 2014 Annu. Rev. Condens. Matter Phys. 5 183
[5] Deng J and Liu D 2021 Bioinspir. Biomim. 16 046013
[6] Chen H, Zhang H, Xu T and Yu J 2021 ACS Nano 15 15625
[7] Fu Y, Yu H, Zhang X, Malgaretti P, Kishore V and Wang W 2022 Micromachines 13 295
[8] Servant A, Qiu F, Mazza M, Kostarelos K and Nelson B J 2015 Adv. Mater. 27 2981
[9] Jiang C, Yang M, Li W, Dou S X, Wang P Y and Li H 2022 iScience 25 104210
[10] Chen J X, Hu J Q and Kapral R 2024 Adv. Sci. 11 2305695
[11] Wu C, Dai J, Li X, Gao L, Wang J, Liu J, Zheng J, Zhan X, Chen J, Cheng X, Yang M and Tang J 2021 Nat. Nanotechnol. 16 288
[12] Hu J, Zhou S, Sun Y, Fang X and Wu L 2012 Chem. Soc. Rev. 41 4356
[13] Shields C W and Velev O D 2017 Chem. 3 539
[14] Fruchart M, Hanai R, Littlewood P B and Vitelli V 2021 Nature 592 363
[15] Liao G J and Klapp S H L 2021 Soft Matter 17 6833
[16] Kaspar C, Ravoo B J, van der Wiel W G, Wegner S V and Pernice W H P 2021 Nature 594 345
[17] Roy S, Shirazi M J, Jantzen B and Abaid N 2019 Phys. Rev. E 100 062415
[18] You F, Yang H X, Li Y, Du W and Wang G 2023 Appl. Comput. Math. 438 127565
[19] Chen L M 2016 Acta Phys. Sin. 65 186401 (in Chinese)
[20] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[21] Bowick M J, Fakhri N, Marchetti M C and Ramaswamy S 2022 Phys. Rev. X 12 010501
[22] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[23] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[24] Liu Z T, Shi Y, Zhao Y, Chaté H, Shi X Q and Zhang T H 2021 Proc. Natl. Acad. Sci. USA 118 e2104724118
[25] Schockmel J, Mersch E, Vandewalle N and Lumay G 2013 Phys. Rev. E 87 062201
[26] Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002
[27] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502
[28] Wu K T, Hishamunda J B, Chen D T N, Decamp S J, Chang Y W, Fernández-Nieves A, Fraden S and Dogic Z 2017 Science 355 eaal1979
[29] Yigit B, Alapan Y and Sitti M 2019 Adv. Sci. 6 1801837
[30] Dorigo M, Theraulaz G and Trianni V 2021 Proc. IEEE 109 1152
[31] Wu R, Zhu Y, Cai X, Wu S, Xu L and Yu T 2022 Micromachines 13 1473
[32] Li S, Batra R, Brown D, Chang H D, Ranganathan N, Hoberman C, Rus D and Lipson H 2019 Nature 567 361
[33] Scholz C, Engel M and Pöschel T 2018 Nat. Commun. 9 931
[34] Wang G, Phan T V, Li S, Wang J, Peng Y, Chen G, Qu J, Goldman D I, Levin S A, Pienta K, Amend S, Austin R H and Liu L 2022 Proc. Natl. Acad. Sci. USA 119 e2120019119
[35] Jin Y, Wang G, Yuan D, Wang P, Wang J, Chen H, Liu L and Zan X 2023 Chin. Phys. B 32 088703
[36] Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F and Yang M 2020 Proc. Natl. Acad. Sci. USA 117 11901
[37] Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H and Liu L 2021 Phys. Rev. Lett. 126 108002
[38] Liu Y, Wang G, Wang P, Yuan D, Hou S, Jin Y, Wang J and Liu L 2023 Chin. Phys. B 32 068701
[39] Debnath D, Gainer J S, Kilic C, Kim D, Matchev K T and Yang Y P 2016 Eur. Phys. J. C 76 645
[40] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[41] Eslami H, Sedaghat P and Müller-Plathe F 2018 Phys. Chem. Chem. Phys. 20 27059
[42] Čapek D and Müller P 2019 Development 146 dev177709
[43] Wesley C C, Mishra S and Levy D L 2020 WIREs Dev. Biol. 9 e376
[44] Gregor T, Bialek W, van Steveninck R R D R, Tank D W and Wieschaus E F 2005 Proc. Natl. Acad. Sci. USA 102 18403
[1] Bio-inspired environmental adaptability of swarm active matter
Yangkai Jin(金阳凯), Gao Wang(王高), Daming Yuan(袁大明), Peilong Wang(王培龙), Jing Wang(王璟), Huaicheng Chen(陈怀城), Liyu Liu(刘雳宇), and Xingjie Zan(昝兴杰). Chin. Phys. B, 2023, 32(8): 088703.
[2] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[3] Spatial distribution order parameter prediction of collective system using graph network
Huimin Zhao(赵慧敏), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(5): 056402.
[4] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[5] Active thermophoresis and diffusiophoresis
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(10): 104702.
[6] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[7] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[8] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[9] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
No Suggested Reading articles found!