Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020506    DOI: 10.1088/1674-1056/ad01a0
GENERAL Prev   Next  

Compression and stretching of ring vortex in a bulk nonlinear medium

Xian-Jing Lai(来娴静)1,†, Xiao-Ou Cai(蔡晓鸥)1,‡, Ya-Bin Shao(邵雅斌)1, and Yue-Yue Wang(王悦悦)2
1 Department of Basic Science, Zhejiang Shuren University, Hangzhou 310015, China;
2 School of Sciences, Zhejiang A&F University, Hangzhou 311300, China
Abstract  We explore the nonlinear gain coupled Schrödinger system through the utilization of the variables separation method and ansatz technique. By employing these approaches, we generate hierarchies of explicit dissipative vector vortices (DVVs) that possess diverse vorticity values. Numerous fundamental characteristics of the DVVs are examined, encompassing amplitude profiles, energy fluxes, parameter effects, as well as linear and dynamic stability.
Keywords:  vector optical vortices      dissipative      nonlinear gain  
Received:  13 July 2023      Revised:  08 October 2023      Accepted manuscript online:  10 October 2023
PACS:  05.45.Yv (Solitons)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11705164 and 11874324).
Corresponding Authors:  Xian-Jing Lai, Xiao-Ou Cai     E-mail:  laixianjing@163.com;Cai.xo@163.com

Cite this article: 

Xian-Jing Lai(来娴静), Xiao-Ou Cai(蔡晓鸥), Ya-Bin Shao(邵雅斌), and Yue-Yue Wang(王悦悦) Compression and stretching of ring vortex in a bulk nonlinear medium 2024 Chin. Phys. B 33 020506

[1] Peng J S, Boscolo S, Zhao Z H and Zeng H P 2019 Sci. Adv. 5 1110
[2] Lai X J, Cai X O and Zhang J F 2018 Commun. Theor. Phys. 69 159
[3] Akhmediev N and Ankiewicz A 2008 Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer) Lecture Notes in Physics Vol. 751 p. 1
[4] Renninger W H, Chong A and Wise F W 2008 Phys. Rev. A 77 023814
[5] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[6] Rosanov N N and Fedorov S V 2016 J. Opt. 18 074005
[7] Chestnov I, Yulin A, Shelykh I A and Kavokin A 2021 Phys. Rev. B 104 165305
[8] Kochetov B A and Tuz V R 2018 Phys. Rev. E 98 062214
[9] Clerc M G, Gonzalez-Cortes G and Echeverria-Alar S 2022 Phys. Rev. Res. 4 L022021
[10] Desyatnikov A, Torner L and Kivshar Y 2005 Prog. Opt. 47 291
[11] Dai C Q, Zhou G Q, Chen R P, Lai X J and Zheng J 2017 Nonlinear Dyn. 88 2629
[12] Minzoni A, Smyth N, Xu Z and Kivshar Y 2009 Phys. Rev. A 79 063808
[13] Tian Q, Wu L, Zhang Y H and Zhang J F 2012 Phys. Rev. E 85 056603
[14] Lai X J, Cai X O and Zhang J F 2018 Commun. Theor. Phys. 69 159
[15] Sharma V, Kumar S C, Aadhi A, Ye H, Samanta G K and Ebrahim-Zadeh M 2019 Sci. Rep. 9 9578
[16] Srinivas P, Perumangatt C, Lal N, Singh R P and Srinivasan B 2018 Opt. Lett. 43 2579
[17] Wang R, He S S, Chen S Z, Zhang J, Shu W X, Luo H L and Wen S C 2018 Opt. Lett. 43 3570
[18] Zhang H C, Weng Z W and Yuan J 2021 Opt. Commun. 492 126978
[19] Fang P P, He J T, Asgari R, Gao X L and Lin J 2023 Eur. Phys. J. Plus 138 482
[20] Wang Q, Mihalache D, Belic M R, Zeng L W and Lin J 2023 Opt. Lett. 48 747
[21] Geng K L, Zhu B W, Cao Q H, Dai C Q and Wang Y Y 2023 Nonlinear Dyn. 111 16483
[22] Chen Y X and Xiao X 2022 Nonlinear Dyn. 109 2003
[23] Xu J Z, Cao Q H and Dai C Q 2022 Commun. Theor. Phys. 74 075001
[24] Lu P H, Zhang X F and Dai C Q 2022 Front. Phys. 17 42501
[25] Zhao J B, Luan Z T, Zhang P, Dai C Q, Biswasc A, Liu W J and Kudryashove N A 2020 Optik 220 165189
[26] Wen X K, Jiang J H, Liu W and Dai C Q 2023 Nonlinear Dyn. 111 13343
[27] Li P F and Dai C Q 2020 Ann. Phys. (Berlin) 532 2000048
[28] Ghosh P K 2021 Phys. Lett. A 402 127361
[29] Dai C Q and Zhang J F 2020 Nonlinear Dyn. 100 1621
[1] Corrigendum to “The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation andcoexisting attractors”
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2023, 32(6): 069902.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
[4] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[5] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[6] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[7] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[8] Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion
Chaohua Wu(吴超华), Zhiwei Fang(方致伟), Jintao Fan(樊景涛), Gang Chen(陈刚), and Ya Cheng(程亚). Chin. Phys. B, 2021, 30(5): 054206.
[9] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[10] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[11] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
No Suggested Reading articles found!