Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020201    DOI: 10.1088/1674-1056/ad0715
GENERAL   Next  

Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness

Guo-Hua Liang(梁国华) and Pei-Lin Yin(尹佩林)
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach. Our analysis reveals the presence of a pseudo-magnetic field and effective spin-orbit interaction (SOI) arising from the curvature, as well as an effective scalar potential resulting from variations in thickness. Importantly, we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems, thus guaranteeing the robustness of spin interference measurements to thickness imperfection. Furthermore, we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios, which is crucial for its utilization in one-side etching systems.
Keywords:  curved surface      inhomogeneous thickness      spin-1/2 particle      effective Hamiltonian  
Received:  15 August 2023      Revised:  16 October 2023      Accepted manuscript online:  26 October 2023
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  61.46.-w (Structure of nanoscale materials)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant No. 12104239), National Natural Science Foundation of Jiangsu Province of China (Grant No. BK20210581), Nanjing University of Posts and Telecommunications Science Foundation (Grant Nos. NY221024 and NY221100), the Science and Technology Program of Guangxi, China (Grant No. 2018AD19310), and the Jiangxi Provincial Natural Science Foundation (Grant No. 20224BAB211020).
Corresponding Authors:  Guo-Hua Liang     E-mail:  lianggh@njupt.edu.cn

Cite this article: 

Guo-Hua Liang(梁国华) and Pei-Lin Yin(尹佩林) Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness 2024 Chin. Phys. B 33 020201

[1] Ren Z and Gao P X 2014 Nanoscale 6 9366
[2] Sun Q, Zhang R, Qiu J, Liu R and Xu W 2017 Adv. Mater. 30 1705630
[3] Pogosov A G, Shevyrin A A, Pokhabov D A, Zhdanov E Y and Kumar S 2022 J. Phys.: Condens. Matter 34 263001
[4] Lilian G, Laurent L, Guillaume L, Benoit W and Benjamin A 2022 Commun. Chem. 5 7
[5] Gentile P, Cuoco M, Volkov O M, Ying Z J, Vera-Marun I J, Makarov D and Ortix C 2022 Nat. Electron. 5 551
[6] Schultheiss V H, Batz S and Peschel U 2016 Nat. Photon. 10 106
[7] Bekenstein R, Kabessa Y, Sharabi Y, et al. 2017 Nat. Photon. 11 664
[8] Schultheiss V H, Batz S, Szameit A, Dreisow F, Nolte S, Tünnermann A, Longhi S and Peschel U 2010 Phys. Rev. Lett. 105 143901
[9] Carollo R A, Aveline D C, Rhyno B, Vishveshwara S, Lannert C, Murphree J D, Elliott E R, Williams J R, Thompson R J and Lundblad N 2022 Nature 606 281
[10] Jia F, Huang Z, Qiu L, Zhou R, Yan Y and Wang D 2022 Phys. Rev. Lett. 129 243402
[11] Jensen H and Koppe H 1971 Ann. Phys. 63 586
[12] da Costa R C T 1981 Phys. Rev. A 23 1982
[13] Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tünnermann A and Longhi S 2010 Phys. Rev. Lett. 104 150403
[14] Cantele G, Ninno D and Iadonisi G 2000 J. Phys.: Condens. Matter 12 9019
[15] Silva K V R A, de Freitas C F and Filgueiras C 2013 Eur. Phys. J. B 86 147
[16] Longhi S 2007 Opt. Lett. 32 2647
[17] Spittel R, Uebel P, Bartelt H and Schmidt M A 2015 Opt. Express 23 12174
[18] Stockhofe J and Schmelcher P 2014 Phys. Rev. A 89 033630
[19] Ferrari G and Cuoghi G 2008 Phys. Rev. Lett. 100 230403
[20] Brandt F T and S'anchez-Monroy J A 2015 Europhys. Lett. 111 67004
[21] Wang Y L and Zong H S 2016 Ann. Phys. 364 68
[22] Ouyang P, Mohta V and Jaffe R 1999 Ann. Phys. 275 297
[23] Burgess M and Jensen B 1993 Phys. Rev. A 48 1861
[24] Brandt F T and Sánchez-Monroy J A 2016 Phys. Lett. A 380 3036
[25] Ortix C 2015 Phys. Rev. B 91 245412
[26] Entin M V and Magarill L I 2001 Phys. Rev. B 64 085330
[27] Chang J Y, Wu J S and Chang C R 2013 Phys. Rev. B 87 174413
[28] Wang Y L, Du L, Xu C T, Liu X J and Zong H S 2014 Phys. Rev. A 90 042117
[29] Wang Y L, Jiang H and Zong H S 2017 Phys. Rev. A 96 022116
[30] Liang G H, Wang Y L, Lai M Y, Liu H, Zong H S and Zhu S N 2018 Phys. Rev. A 98 062112
[31] Maraner P and Destri C 1993 Mod. Phys. Lett. A 08 861
[32] Maraner P 1995 J. Phys. A: Math. Gen. 28 2939
[33] Maraner P 1996 Ann. Phys. 246 325
[34] Fujii K, Ogawa N, Uchiyama S and Chepilko N M 1997 Int. J. Mod. Phys. A 12 5235
[35] Schuster P and Jaffe R 2003 Ann. Phys. 307 132
[36] Meschede L, Schwager B, Schulz D and Berakdar J 2023 Phys. Rev. A 107 062806
[37] Batz S and Peschel U 2008 Phys. Rev. A 78 043821
[38] Lai M Y, Wang Y L, Liang G H, Wang F and Zong H S 2018 Phys. Rev. A 97 033843
[39] Lai M Y, Wang Y L, Liang G H and Zong H S 2019 Phys. Rev. A 100 033825
[40] Gaididei Y, Kravchuk V P and Sheka D D 2014 Phys. Rev. Lett. 112 257203
[41] Streubel R, Fischer P, Kronast F, Kravchuk V P, Sheka D D, Gaididei Y, Schmidt O G and Makarov D 2016 J. Phys. D: Appl. Phys. 49 363001
[42] Caracanhas M A, Massignan P and Fetter A L 2022 Phys. Rev. A 105 023307
[43] Salasnich L 2022 SciPost Phys. Core 5 015
[44] Liang G H and Lai M Y 2023 Phys. Rev. A 107 022213
[45] Hooft G 2005 50 years of Yang-Mills theory (Singapore: World Scientific)
[1] High-order Hamiltonian obtained by Foldy-Wouthuysen transformation up to the order of mα8
Tong Chen(陈彤), Xuesong Mei(梅雪松), Wanping Zhou(周挽平), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2023, 32(8): 083101.
[2] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[3] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
[4] Electronic states and shape of silicon quantum dots
Huang Wei-Qi (黄伟其), Miao Xing-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Cheng Han-Qiong (陈汉琼), Shu Qin (苏琴). Chin. Phys. B, 2013, 22(6): 064207.
[5] Curved surface effect and emission on silicon nanostructures
Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
No Suggested Reading articles found!