Abstract We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach. Our analysis reveals the presence of a pseudo-magnetic field and effective spin-orbit interaction (SOI) arising from the curvature, as well as an effective scalar potential resulting from variations in thickness. Importantly, we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems, thus guaranteeing the robustness of spin interference measurements to thickness imperfection. Furthermore, we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios, which is crucial for its utilization in one-side etching systems.
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant No. 12104239), National Natural Science Foundation of Jiangsu Province of China (Grant No. BK20210581), Nanjing University of Posts and Telecommunications Science Foundation (Grant Nos. NY221024 and NY221100), the Science and Technology Program of Guangxi, China (Grant No. 2018AD19310), and the Jiangxi Provincial Natural Science Foundation (Grant No. 20224BAB211020).
Guo-Hua Liang(梁国华) and Pei-Lin Yin(尹佩林) Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness 2024 Chin. Phys. B 33 020201
[1] Ren Z and Gao P X 2014 Nanoscale6 9366 [2] Sun Q, Zhang R, Qiu J, Liu R and Xu W 2017 Adv. Mater.30 1705630 [3] Pogosov A G, Shevyrin A A, Pokhabov D A, Zhdanov E Y and Kumar S 2022 J. Phys.: Condens. Matter34 263001 [4] Lilian G, Laurent L, Guillaume L, Benoit W and Benjamin A 2022 Commun. Chem.5 7 [5] Gentile P, Cuoco M, Volkov O M, Ying Z J, Vera-Marun I J, Makarov D and Ortix C 2022 Nat. Electron.5 551 [6] Schultheiss V H, Batz S and Peschel U 2016 Nat. Photon.10 106 [7] Bekenstein R, Kabessa Y, Sharabi Y, et al. 2017 Nat. Photon.11 664 [8] Schultheiss V H, Batz S, Szameit A, Dreisow F, Nolte S, Tünnermann A, Longhi S and Peschel U 2010 Phys. Rev. Lett.105 143901 [9] Carollo R A, Aveline D C, Rhyno B, Vishveshwara S, Lannert C, Murphree J D, Elliott E R, Williams J R, Thompson R J and Lundblad N 2022 Nature606 281 [10] Jia F, Huang Z, Qiu L, Zhou R, Yan Y and Wang D 2022 Phys. Rev. Lett.129 243402 [11] Jensen H and Koppe H 1971 Ann. Phys.63 586 [12] da Costa R C T 1981 Phys. Rev. A23 1982 [13] Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tünnermann A and Longhi S 2010 Phys. Rev. Lett.104 150403 [14] Cantele G, Ninno D and Iadonisi G 2000 J. Phys.: Condens. Matter12 9019 [15] Silva K V R A, de Freitas C F and Filgueiras C 2013 Eur. Phys. J. B86 147 [16] Longhi S 2007 Opt. Lett.32 2647 [17] Spittel R, Uebel P, Bartelt H and Schmidt M A 2015 Opt. Express23 12174 [18] Stockhofe J and Schmelcher P 2014 Phys. Rev. A89 033630 [19] Ferrari G and Cuoghi G 2008 Phys. Rev. Lett.100 230403 [20] Brandt F T and S'anchez-Monroy J A 2015 Europhys. Lett.111 67004 [21] Wang Y L and Zong H S 2016 Ann. Phys.364 68 [22] Ouyang P, Mohta V and Jaffe R 1999 Ann. Phys.275 297 [23] Burgess M and Jensen B 1993 Phys. Rev. A48 1861 [24] Brandt F T and Sánchez-Monroy J A 2016 Phys. Lett. A380 3036 [25] Ortix C 2015 Phys. Rev. B91 245412 [26] Entin M V and Magarill L I 2001 Phys. Rev. B64 085330 [27] Chang J Y, Wu J S and Chang C R 2013 Phys. Rev. B87 174413 [28] Wang Y L, Du L, Xu C T, Liu X J and Zong H S 2014 Phys. Rev. A90 042117 [29] Wang Y L, Jiang H and Zong H S 2017 Phys. Rev. A96 022116 [30] Liang G H, Wang Y L, Lai M Y, Liu H, Zong H S and Zhu S N 2018 Phys. Rev. A98 062112 [31] Maraner P and Destri C 1993 Mod. Phys. Lett. A08 861 [32] Maraner P 1995 J. Phys. A: Math. Gen.28 2939 [33] Maraner P 1996 Ann. Phys.246 325 [34] Fujii K, Ogawa N, Uchiyama S and Chepilko N M 1997 Int. J. Mod. Phys. A12 5235 [35] Schuster P and Jaffe R 2003 Ann. Phys.307 132 [36] Meschede L, Schwager B, Schulz D and Berakdar J 2023 Phys. Rev. A107 062806 [37] Batz S and Peschel U 2008 Phys. Rev. A78 043821 [38] Lai M Y, Wang Y L, Liang G H, Wang F and Zong H S 2018 Phys. Rev. A97 033843 [39] Lai M Y, Wang Y L, Liang G H and Zong H S 2019 Phys. Rev. A100 033825 [40] Gaididei Y, Kravchuk V P and Sheka D D 2014 Phys. Rev. Lett.112 257203 [41] Streubel R, Fischer P, Kronast F, Kravchuk V P, Sheka D D, Gaididei Y, Schmidt O G and Makarov D 2016 J. Phys. D: Appl. Phys.49 363001 [42] Caracanhas M A, Massignan P and Fetter A L 2022 Phys. Rev. A105 023307 [43] Salasnich L 2022 SciPost Phys. Core5 015 [44] Liang G H and Lai M Y 2023 Phys. Rev. A107 022213 [45] Hooft G 2005 50 years of Yang-Mills theory (Singapore: World Scientific)
Curved surface effect and emission on silicon nanostructures Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.