Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108703    DOI: 10.1088/1674-1056/acea65
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of individual behavior adoption heterogeneity on epidemic transmission in multiplex networks

Liang'an Huo(霍良安) and Yue Yu(于跃)
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  In recent years, the impact of information diffusion and individual behavior adoption patterns on epidemic transmission in complex networks has received significant attention. In the immunization behavior adoption process, different individuals often make behavioral decisions in different ways, and it is of good practical importance to study the influence of individual heterogeneity on the behavior adoption process. In this paper, we propose a three-layer coupled model to analyze the process of co-evolution of official information diffusion, immunization behavior adoption and epidemic transmission in multiplex networks, focusing on individual heterogeneity in behavior adoption patterns. Specifically, we investigate the impact of the credibility of social media and the risk sensitivity of the population on behavior adoption in further study of the effect of heterogeneity of behavior adoption on epidemic transmission. Then we use the microscopic Markov chain approach to describe the dynamic process and capture the evolution of the epidemic threshold. Finally, we conduct extensive simulations to prove our findings. Our results suggest that enhancing the credibility of social media can raise the epidemic transmission threshold, making it effective at controlling epidemic transmission during the dynamic process. In addition, improving an individuals' risk sensitivity, and thus their taking effective protective measures, can also reduce the number of infected individuals and delay the epidemic outbreak. Our study explores the role of individual heterogeneity in behavior adoption in real networks, more clearly models the effect of the credibility of social media and risk sensitivity of the population on the epidemic transmission dynamic, and provides a useful reference for managers to formulate epidemic control and prevention policies.
Keywords:  multiplex network      epidemic transmission      behavior  
Received:  11 April 2023      Revised:  05 July 2023      Accepted manuscript online:  26 July 2023
PACS:  64.60.aq (Networks)  
  87.23.Kg (Dynamics of evolution)  
  87.23.Ge (Dynamics of social systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Natural Science Foundation of Shanghai (Grant No. 21ZR1444100).
Corresponding Authors:  Liang'an Huo     E-mail:  huohuolin@yeah.net

Cite this article: 

Liang'an Huo(霍良安) and Yue Yu(于跃) Impact of individual behavior adoption heterogeneity on epidemic transmission in multiplex networks 2023 Chin. Phys. B 32 108703

[1] Yang L, Liu S S, Liu J Y, Zhang Z X, Wan X C, Huang B, Chen Y H and Zhang Y 2020 Signal Transduction and Targeted Therapy 5 1
[2] Le T T, Andreadakis Z, Kumar A, Román R G, Tollefsen S, Saville M and Mayhew S 2020 Nat. Rev. Drug Discov. 19 305
[3] Yuki K, Fujiogi M and Koutsogiannaki S 2020 Clin. Immunol. 215 108427
[4] Velavan T P and Meyer C G 2020 Trop. Med. Int. Health 25 278
[5] Daniel S J 2020 Prospects 49 91
[6] Burki T K 2022 Lanc. Resp. Med. 10 e17
[7] Berkman L F and Kawachi I 2014 Social Epidemiology (New York: Oxford University Press) pp. 304-309
[8] Bailey N T J 1975 The Mathematical Theory of Infectious Diseases and Its Applications (High Wycombe: Bucks HP13 6LE) pp. 85-87
[9] Grabowski A and Kosiński R A 2004 Phys. Rev. E 70 031908
[10] El-Dessoky M M and Khan M A 2022 Alex. Eng. J. 61 729
[11] Vassallo L, Perez I A, Alvarez-Zuzek L G, Amaya J, Torres M F, Valdez L D and Braunstein L A 2022 Math. Biosci. 346 108664
[12] El Hajji M and Albargi A H 2022 Math. Biosci. Eng. 19 2853
[13] Chang L, Gao S and Wang Z 2022 J. Theor. Biol. 536 111003
[14] Nourbakhsh S, Fazil A, Li M, Mangat C S, Peterson S W, Daigle J and Champredon D 2022 Epidemics 39 100560
[15] Vosoughi S, Roy D and Aral S 2018 Science 359 1146
[16] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
[17] Zhan X X, Liu C, Zhou G, Zhang Z K, Sun G Q, Zhu J J, and Jin Z 2018 Appl. Math. Comput. 332 437
[18] Kabir K M A and Tanimoto J 2019 Commun. Nonlinear Sci. 72 565
[19] Zeng Q, Liu Y, Tang M and Gong J 2021 Knowledge-Based Systems 229 107365
[20] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[21] Hong X, Han Y, Tanaka G and Wang B 2022 Knowledge-Based Systems 252 109413
[22] Granell C, Gómez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
[23] Granell C, Gómez S and Arenas A 2014 Phys. Rev. E 90 012808
[24] Wang Z and Xia C 2020 Nonlinear Dyn. 102 3039
[25] Li R, Tang M and Hui P M 2013 Acta Phys. Sin. 62 168903 (in Chinese)
[26] Peng K, Lu Z, Lin V, Lindstrom M R, Parkinson C, Wang C and Porter M A 2021 Mathem. Mod. Meth. Appl. Sci. 31 2455
[27] Guo Q, Jiang X, Lei Y, Li M, Ma Y and Zheng Z 2015 Phys. Rev. E 91 012822
[28] Xu H, Zhao Y and Han D 2022 Nonlinear Dyn. 110 901
[29] Li R, Wang W and Di Z 2017 Physica A 467 30
[30] Li R, Richmond P and Roehner B M 2018 Physica A 510 713
[31] Liu C, Yang Y, Chen B, Cui T, Shang F, Fan J and Li R 2022 Chaos 32 081105
[32] Fan C J, Jin Y, Huo L A, Liu C, Yang Y P and Wang Y Q 2016 Physica A 461 523
[33] Zhu L, Liu W and Zhang Z 2021 Math. Comput. Simulat. 188 268
[34] Liu Q H, Wang W, Tang M and Zhang H F 2016 Sci. Rep. 6 25617
[35] Liu Q H, Wang W, Cai S M, Tang M and Lai Y C 2018 Phys. Rev. E 97 022311
[36] Zuo C, Wang A, Zhu F, Meng Z and Zhao X 2021 Complexity 2021 6680135
[37] Ventura P C, Aleta A, Rodrigues F A and Moreno Y 2022 Chaos, Solitons & Fractals 156 111849
[38] Liu L, Wang X, Tang S, Zheng H and Zheng Z 2021 J. Stat. Mech.: Theory Experiment 2021 063402
[39] Gao X and Tian L 2019 Physica A 514 226
[40] Zhang Y, Su Y, Weigang L and Liu H 2019 Chaos, Solitons & Fractals 121 168
[41] Boslaugh S 2007 Encyclopedia of Epidemiology (New York: Sage Publications) pp. 125-126
[42] Weinberg G A and Szilagyi P G 2010 J. Infect. Dis. 201 1607
[43] Osterholm M T, Kelley N S, Sommer A and Belongia E A 2012 Lancet Infect. Dis. 12 36
[44] Wang Z, Moreno Y, Boccaletti S and Perc M 2017 Chaos, Solitons & Fractals 103 177
[45] Dai X, Zhu P, Guo Y and Wang Z 2019 IEEE Access 7 61558
[46] Yin Q, Wang Z, Xia C and Bauch C T 2022 Commun. Nonlinear Sci. 109 106312
[47] Li W, Cai M, Zhong X, Liu Y, Lin T and Wang W 2023 Chaos, Solitons & Fractals 168 113102
[48] Li W, Nie Y, Li W, Chen X, Su S and Wang W 2022 Chaos 32 093135
[49] Li W, Ni L, Zhang Y, Su S, Peng B and Wang W 2022 Frontiers in Physics 946
[50] Nie Y, Zhong X, Lin T and Wang W 2022 Appl. Math. Comput. 432 127380
[51] Shi H J, Duan Z S, Chen G R and Li R 2009 Chin. Phys. B 18 3309
[52] Fu F, Rosenbloom D I, Wang L and Nowak M A 2011 Proceedings of the Royal Society B: Biological Sciences 278 42
[53] Wang Z, Bauch C T, Bhattacharyya S, d'Onofrio A, Manfredi P, Perc M and Zhao D 2016 Phys. Rep. 664 1
[54] Ruan Z, Tang M and Liu Z 2012 Phys. Rev. E 86 036117
[55] Gómez S, Arenas A, Borge-Holthoefer J, Meloni S and Moreno Y 2010 Europhys. Lett. 89 38009
[56] Wang Y, Chakrabarti D, Wang C and Faloutsos C 2023 In 22nd International Symposium on Reliable Distributed Systems 25-34
[57] Sun M, Tao Y and Fu X 2021 Chaos 31 093134
[1] Turing/Turing-like patterns: Products of random aggregation of spatial components
Jian Gao(高见), Xin Wang(王欣), Xinshuang Liu(刘心爽), and Chuansheng Shen(申传胜). Chin. Phys. B, 2023, 32(7): 070503.
[2] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[3] Pedestrian evacuation simulation in multi-exit case: An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), and Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[4] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[5] Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network
Sedric Ndoungalah, Guy Roger Deffo, Arnaud Djine, and Serge Bruno Yamgoué. Chin. Phys. B, 2023, 32(11): 110505.
[6] Effect of conformity on evolution of cooperation in a coordination game
Xianjia Wang(王先甲) and Tao Wang(王饕). Chin. Phys. B, 2023, 32(10): 100202.
[7] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[12] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[13] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[14] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[15] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
No Suggested Reading articles found!