|
|
Generation of hyperentangled photon pairs based on lithium niobate waveguide |
Yang-He Chen(陈洋河)1,2, Zhen Jiang(姜震)1,2, and Guang-Qiang He(何广强)1,2,† |
1 SJTU Pinghu Institute of Intelligent Optoelectronics, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Generation of hyperentangled photon pairs is investigated based on the lithium niobate straight waveguide. We propose to use the nonlinear optical process of spontaneous parametric down-conversion (SPDC) and a well-designed lithium niobate waveguide structure to generate a hyperentangled (in the polarization dimension and the energy-time dimension) two-photon state. By performing numerical simulations of the waveguide structure and calculating the possible polarization states, joint spectral amplitudes (JSA), and joint temporal amplitudes (JTA) of the generated photon pair, we show that the generated photon pair is indeed hyperentangled in both the polarization dimension and the energy-time dimension.
|
Received: 27 March 2023
Revised: 28 April 2023
Accepted manuscript online: 16 May 2023
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No. 2018B030325002), the National Natural Science Foundation of China (Grant No. 62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No. 2022SPIOE204), and the Science and Technology on Metrology and Calibration Laboratory (Grant No. JLJK2022001B002). |
Corresponding Authors:
Guang-Qiang He
E-mail: gqhe@sjtu.edu.cn
|
Cite this article:
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强) Generation of hyperentangled photon pairs based on lithium niobate waveguide 2023 Chin. Phys. B 32 090306
|
[1] Steane A 1998 Rep. Prog. Phys. 61 117 [2] O'brien J L 2007 Science 318 1567 [3] Gyongyosi L and Imre S 2019 Comput. Sci. Rev. 31 51 [4] Gisin N and Thew R 2007 Nat. Photon. 1 165 [5] Cozzolino D, Da Lio B, Bacco D and Oxenlowe L K 2019 Adv. Quantum Technol. 2 1900038 [6] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932 [7] Childs A M, Preskill J and Renes J 2000 J. Mod. Opt. 47 155 [8] Zhang H, Chen X and Yin Z Q 2021 Adv. Quantum Technol. 4 2000154 [9] Häffner H, Gulde S, Riebe M, Lancaster G, Becher C, Eschner J, Schmidt-Kaler F and Blatt R 2003 Phys. Rev. Lett. 90 143602 [10] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278 [11] Peper M, Helmrich F, Butscher J, Agner J A, Schmutz H, Merkt F and Deiglmayr J 2019 Phys. Rev. A 100 012501 [12] Luo Y and Li Y 2019 Chin. Phys. B 28 040301 [13] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301 [14] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [15] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656 [16] Bruβ D, D'Ariano G M, Lewenstein M, Macchiavello C, Sen A and Sen U 2004 Phys. Rev. Lett. 93 210501 [17] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 [18] Barz S 2015 J. Phys. B: At. Mol. Opt. 48 083001 [19] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 [20] Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307 [21] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S and Guo G C 2016 Nat. Commun. 7 13514 [22] Graffitti F, D’Ambrosio V, Proietti M, Ho J, Piccirillo B, de Lisio C, Marrucci L and Fedrizzi A2020 Phys. Rev. Res. 2 043350 [23] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46 [24] Graham T M 2016 Using Hyperentanglement for Advanced Quantum Communication (Ph.D. Dissertation) (Illinois: University of Illinois at Urbana-Champaign) [25] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N and Wong C W 2015 Nat. Photon. 9 536 [26] Chen Y, Ecker S, Wengerowsky S, Bulla L, Joshi S K, Steinlechner F and Ursin R 2018 Phys. Rev. Lett. 121 200502 [27] Chen Y, Ecker S, Bavaresco J, Scheidl T, Chen L, Steinlechner F, Huber M and Ursin R 2020 Phys. Rev. A 101 032302 [28] Saravi S, Pertsch T and Setzpfandt F 2017 Phys. Rev. Lett. 118 183603 [29] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304 [30] MacLean J P W, Donohue J M and Resch K J 2018 Phys. Rev. Lett. 120 053601 [31] Jin R B, Saito T and Shimizu R 2018 Phys. Rev. Appl. 10 034011 [32] Khan I A and Howell J C 2006 Phys. Rev. A 73 031801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|