Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090306    DOI: 10.1088/1674-1056/acd5c4
GENERAL Prev   Next  

Generation of hyperentangled photon pairs based on lithium niobate waveguide

Yang-He Chen(陈洋河)1,2, Zhen Jiang(姜震)1,2, and Guang-Qiang He(何广强)1,2,†
1 SJTU Pinghu Institute of Intelligent Optoelectronics, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Generation of hyperentangled photon pairs is investigated based on the lithium niobate straight waveguide. We propose to use the nonlinear optical process of spontaneous parametric down-conversion (SPDC) and a well-designed lithium niobate waveguide structure to generate a hyperentangled (in the polarization dimension and the energy-time dimension) two-photon state. By performing numerical simulations of the waveguide structure and calculating the possible polarization states, joint spectral amplitudes (JSA), and joint temporal amplitudes (JTA) of the generated photon pair, we show that the generated photon pair is indeed hyperentangled in both the polarization dimension and the energy-time dimension.
Keywords:  hyperentanglement      nonlinear photonic crystal      lithium niobate waveguide  
Received:  27 March 2023      Revised:  28 April 2023      Accepted manuscript online:  16 May 2023
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No. 2018B030325002), the National Natural Science Foundation of China (Grant No. 62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No. 2022SPIOE204), and the Science and Technology on Metrology and Calibration Laboratory (Grant No. JLJK2022001B002).
Corresponding Authors:  Guang-Qiang He     E-mail:  gqhe@sjtu.edu.cn

Cite this article: 

Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强) Generation of hyperentangled photon pairs based on lithium niobate waveguide 2023 Chin. Phys. B 32 090306

[1] Steane A 1998 Rep. Prog. Phys. 61 117
[2] O'brien J L 2007 Science 318 1567
[3] Gyongyosi L and Imre S 2019 Comput. Sci. Rev. 31 51
[4] Gisin N and Thew R 2007 Nat. Photon. 1 165
[5] Cozzolino D, Da Lio B, Bacco D and Oxenlowe L K 2019 Adv. Quantum Technol. 2 1900038
[6] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[7] Childs A M, Preskill J and Renes J 2000 J. Mod. Opt. 47 155
[8] Zhang H, Chen X and Yin Z Q 2021 Adv. Quantum Technol. 4 2000154
[9] Häffner H, Gulde S, Riebe M, Lancaster G, Becher C, Eschner J, Schmidt-Kaler F and Blatt R 2003 Phys. Rev. Lett. 90 143602
[10] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[11] Peper M, Helmrich F, Butscher J, Agner J A, Schmutz H, Merkt F and Deiglmayr J 2019 Phys. Rev. A 100 012501
[12] Luo Y and Li Y 2019 Chin. Phys. B 28 040301
[13] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[14] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[15] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[16] Bruβ D, D'Ariano G M, Lewenstein M, Macchiavello C, Sen A and Sen U 2004 Phys. Rev. Lett. 93 210501
[17] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[18] Barz S 2015 J. Phys. B: At. Mol. Opt. 48 083001
[19] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
[20] Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307
[21] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S and Guo G C 2016 Nat. Commun. 7 13514
[22] Graffitti F, D’Ambrosio V, Proietti M, Ho J, Piccirillo B, de Lisio C, Marrucci L and Fedrizzi A2020 Phys. Rev. Res. 2 043350
[23] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[24] Graham T M 2016 Using Hyperentanglement for Advanced Quantum Communication (Ph.D. Dissertation) (Illinois: University of Illinois at Urbana-Champaign)
[25] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N and Wong C W 2015 Nat. Photon. 9 536
[26] Chen Y, Ecker S, Wengerowsky S, Bulla L, Joshi S K, Steinlechner F and Ursin R 2018 Phys. Rev. Lett. 121 200502
[27] Chen Y, Ecker S, Bavaresco J, Scheidl T, Chen L, Steinlechner F, Huber M and Ursin R 2020 Phys. Rev. A 101 032302
[28] Saravi S, Pertsch T and Setzpfandt F 2017 Phys. Rev. Lett. 118 183603
[29] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304
[30] MacLean J P W, Donohue J M and Resch K J 2018 Phys. Rev. Lett. 120 053601
[31] Jin R B, Saito T and Shimizu R 2018 Phys. Rev. Appl. 10 034011
[32] Khan I A and Howell J C 2006 Phys. Rev. A 73 031801
[1] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[2] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[3] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[4] Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal
Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维), Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(12): 120307.
[5] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[6] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[7] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[8] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[9] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[10] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[11] Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons
Chen Xiong-Wen (陈雄文), Lin Xu-Sheng (林旭升), Lan Sheng (兰胜). Chin. Phys. B, 2005, 14(2): 366-371.
No Suggested Reading articles found!