Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088901    DOI: 10.1088/1674-1056/accb4a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A kinetic description of the impact of agent competence and psychological factors on investment decision-making

Chunhua Hu(胡春华)1,† and Hongjing Chen(陈弘婧)2
1. School of Economics, Southwest Minzu University, Chengdu 610041, China;
2. School of Statistics, Chengdu University of Information Technology, Chengdu 610103, China
Abstract  The kinetic theory is employed to analyze influence of agent competence and psychological factors on investment decision-making. We assume that the wealth held by agents in the financial market is non-negative, and agents set their own investment strategies. The herding behavior is considered when analyzing the impact of an agent's psychological factors on investment decision-making. A nonlinear Boltzmann model containing herding behavior, agent competence and irrational behavior is employed to investigate investment decision-making. To characterize the agent's irrational behavior, we utilize a value function which includes current and ideal-investment decisions to describe the agent's irrational behavior. Employing the asymptotic procedure, we obtain the Fokker-Planck equation from the Boltzmann equation. Numerical results and the stationary solution of the obtained Fokker-Planck equation illustrate how herding behavior, agent competence, psychological factors, and irrational behavior affect investment decision-making, i.e., herding behavior has both advantages and disadvantages for investment decision-making, and the agent's competence to invest helps the agent to increase income and to reduce loss.
Keywords:  kinetic theory      investment decisions      Fokker-Planck equation      value function  
Received:  17 February 2023      Revised:  03 April 2023      Accepted manuscript online:  07 April 2023
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  47.45.Ab (Kinetic theory of gases)  
  05.20.Dd (Kinetic theory)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities and Southwest Minzu University (Grant No.2022SJQ002).
Corresponding Authors:  Chunhua Hu     E-mail:  chunhuahu@swun.edu.cn

Cite this article: 

Chunhua Hu(胡春华) and Hongjing Chen(陈弘婧) A kinetic description of the impact of agent competence and psychological factors on investment decision-making 2023 Chin. Phys. B 32 088901

[1] Xuan V and Dang B 2019 Pacific-Basin Finance J. 53 321
[2] Zhang A and Wang M Y 2020 Chin. Phys. B 29 048901
[3] Wu G S, Yang B X and Zhao N R 2020 Emerg. Mark. Finance Trade 56 3578
[4] Weller J, Ceschi A, Hirsch L, Sartori R and Costantini A 2018 Front. Psychol. 9 2258
[5] Liang S J and Zou Y W 2018 Judgm. Decis. Mak. 13 393
[6] Bryan M C and Paul W 2020 South. Econ. J. 86 1531
[7] Kahneman D and Tversky A 1979 Econometrica 47 263
[8] Maldonado W L and Svaiter B F 2007 J. Math. Econ. 43 629
[9] Gualandi S and Toscani G 2019 Physica A 524 221
[10] Gualandi S and Toscani G 2019 Math. Models Methods Appl. Sci. 29 717
[11] Torney C J, Levin S A and Couzin I D 2020 J. Stat. Phys. 151 203
[12] Maria L B and Giovanni M 2014 Appl. Math. Comput. 244 836
[13] Bae H O, Cho S Y and Yun S B 2019 J. Stat. Phys. 176 398
[14] Stelios B, Mouna J, Brian L, Kamel N and Gazi S U 2017 North Am. J. Econ. Finance 42 107
[15] Zhong Y, Lai S Y and Hu C H 2021 Appl. Math. Comput. 404 126231
[16] Wang G Q, Luo H and Hu X X 2018 Chin. Phys. B 27 028901
[17] Hu Z Y, Li X P, Wang J, Xia C Y, Wang Z and Perc M 2021 IEEE Trans. Netw. Sci. Eng. 8 3087
[18] Xia C Y, Hu Z Y and Zhao D W 2022 New J. Phys. 24 083041
[19] Da C and Fan H Y 2014 Acta Phys. Sin. 63 098901 (in Chinese)
[20] Maldarella D and Pareschi L 2012 Physica A 391 715
[21] Pareschi L, Vellucci P and Zanella M 2017 Physica A 467 201
[22] Düring B, Markowich P, Pietschmann J F and Wolfram M T 2009 Proc. R. Soc. A 465 3687
[23] Zhu Y, Guergachi A H and Huang X 2018 J. Stat. Phys. 173 1734
[24] Sato A, Yamada T, Izui K, Nishiwaki S and Takata S 2019 J. Comput. Phys. 395 60
[25] Serdar C, Yu F, Washington M and Giray Ö 2019 J. Comput. Appl. Math. 348 120
[26] Jiang W l, Pan G P, Liu Y Z and Meng Z Y 2022 Chin. Phys. B 31 040504
[27] Zheng Y F, Xiao J Y, Wang Y P, Zheng J S and Zhuang G 2021 Chin. Phys. B 30 095201
[28] Hou P W, Li Y H, Li Z Z, Wang L F, Gao X Y, Zhou H B and Song H F 2021 Chin. Phys. B 30 086108
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[3] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[4] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[5] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[6] Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise
Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国). Chin. Phys. B, 2012, 21(12): 120501.
[7] Study on tapered crossed subwavelength gratings by Fourier modal method
Chen Xi(陈熙), Zhong Yuan(钟源), Wang Qing(王青), Zhang Ye-Jin(张冶金), and Chen Liang-Hui(陈良惠). Chin. Phys. B, 2010, 19(10): 104101.
[8] RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas
Mao Ming(毛明), Wang Shuai(王帅), Dai Zhong-Ling(戴忠玲), and Wang You-Nian(王友年). Chin. Phys. B, 2007, 16(7): 2044-2050.
[9] Thermal conductivity of dielectric nanowires with different cross-section shapes
Gu Xiao-Kun(顾骁坤) and Cao Bing-Yang(曹炳阳). Chin. Phys. B, 2007, 16(12): 3777-3782.
[10] Fokker-planck study of tokamak electron cyclotron resonance heating
Shi Bing-Ren (石秉仁), Long Yong-Xing (龙永兴), Dong Jia-Qi (董家齐), Li Wen-Zhong (郦文忠), Jiao Yi-Ming (焦一鸣), Wang Ai-Ke (王爱科). Chin. Phys. B, 2003, 12(11): 1251-1256.
No Suggested Reading articles found!