INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink |
Min-Hui Ji(冀敏慧)1, Xin-Miao Zhang(张欣苗)1, Meng-Chun Pan(潘孟春)1, Qing-Fa Du(杜青法)1, Yue-Guo Hu(胡悦国)1, Jia-Fei Hu(胡佳飞)1, Wei-Cheng Qiu(邱伟成)1, Jun-Ping Peng(彭俊平)1, Zhu Lin(林珠)2, and Pei-Sen Li(李裴森)1,† |
1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; 2 Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract The spin-transfer-torque (STT) magnetic tunneling junction (MTJ) device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing. Therefore, building a simulation framework of hybrid STT-MTJ/CMOS (complementary metal-oxide-semiconductor) circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices. In this work, we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink, which is mainly composed of a physics-based STT-MTJ model, a controlled resistor, and a current sensor. In the proposed framework, the STT-MTJ model, based on the Landau-Lifshitz-Gilbert-Slonczewsk (LLGS) equation, is implemented using the MATLAB script. The proposed simulation framework is modularized design, with the advantage of simple-to-use and easy-to-expand. To prove the effectiveness of the proposed framework, the STT-MTJ model is benchmarked with experimental results. Furthermore, the pre-charge sense amplifier (PCSA) circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated. The results demonstrate the effectiveness of our simulation framework.
|
Received: 25 October 2022
Revised: 16 December 2022
Accepted manuscript online: 21 December 2022
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62004223), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2022RC1094), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF202012), and the Hunan Provincial Science Innovation Project for Postgraduate, China (Grant No. CX20210086). |
Corresponding Authors:
Pei-Sen Li
E-mail: lpsen@nudt.edu.cn
|
Cite this article:
Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森) Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink 2023 Chin. Phys. B 32 078506
|
[1] Finocchio G, Di Ventra M, Camsari K Y, Everschor-Sitte K, Khalili A P and Zeng Z M 2021 J. Magn. Magn. Mater. 521 167506 [2] Grollier J, Querlioz D and Stiles M D 2016 Proc. IEEE 104 2024 [3] Yogendra K, Fan D, Jung B and Roy K 2016 IEEE T. Electron Dev. 63 1674 [4] Yogendra K, Liyanagedera C, Fan D, Shim Y and Roy K 2017 ACM J. Emerg. Technol. Comput. Sys. 13 56 [5] Apalkov D, Dieny B and Slaughter J M 2016 Proc. IEEE 104 1796 [6] Oh I Y, Park S Y, Kang D H and Park C S 2014 IEEE Microw. Wirel. Compon. Lett. 24 502 [7] Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G and Zeng Z M 2016 Nat. Commun. 7 11259 [8] Yin X L, Yang Y, Liu Y F, Hua J, Sokolov A, Ewing D, De R P J, Gao K Z and Liou S H 2019 Spintronics XII (San Diego) p. 110903H [9] Atsufumi H, Keisuke Y, Yoshinobu N, Ioan L P, Bernard D, Philipp P and Burkard H 2020 J. Magn. Magn. Mater. 509 166711 [10] Locatelli N, Cros V and Grollier J 2014 Nat. Mater. 13 11 [11] Mazza L, Puliafito V, Raimondo E, Giordano A, Zeng Z, Carpentieri M and Finocchio G 2022 Phys. Rev. Appl. 17 014045 [12] Sengupta A, Panda P, Wijesinghe P, Kim Y and Roy K 2016 Sci. Rep. 6 30039 [13] Romera M, Talatchian P, Tsunegi S, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Cros V, Bortolotti P, Ernoult M, Querlioz D and Grollier J 2022 Nat. Commun. 13 883 [14] Joshi V K, Barla P, Bhat S and Kaushik B K 2020 IEEE Access 8 194105 [15] Zhang Y, Zhao W S, Lakys Y, Klein J O, Kim J V, Ravelosona D and Chappert C 2012 IEEE T. Electron Dev. 59 819 [16] Yang S, Wei F and Hao Y 2012 17th Asia and South Pacific Design Automation Conference 2012, January 30-February 2, Sydney, NSW, Australia, p. 529 [17] Panagopoulos G D, Augustine C and Roy K 2013 IEEE T. Electron Dev. 60 2808 [18] Kazemi M, Ipek E and Friedman E G 2014 IEEE T. Electron Dev. 61 3883 [19] Li Q Y, Zhang P H and Li H T 2021 Chin. Phys. B 30 047504 [20] Hu X T A, Brigner W H, Incorvia J A C and Friedman J S 2019 IEEE T. Electron Dev. 66 2817 [21] Fernando G R, Pranay P, Mudit D and Cyrille D 2021 SMACD/PRIME 2021 International Conference on SMACD and 16th Conference on PRIME, July 19-22 online p. 1 [22] Wang Y, Cai H, Naviner L A B, Zhang Y, Klein J O and Zhao W S 2015 Microelectron Reliab. 55 1649 [23] György C, Matt P, Dmitri E N, George I B, Andras H, Tamas R and Wolfgang P 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, August 29-31, Turin, Italy, p. 1 [24] Csaba G and Porod W 2020 Phys. Rev. Appl. 7 011302 [25] Leroux N, Mizrahi A, Marković1 D, Sanz-Hernández D, Trastoy J, Bortolotti P, Martins L, Jenkins A, Ferreira R and Grollier J 2021 Neuromorph. Comput. Eng. 1 011001 [26] Miwa S, Ishibashi S, Tomita H, Nozaki T, Tamura E, Ando K, Mizuochi N, Saruya T, Kubota H, Yakushiji K, Taniguchi T, Imamura H, Fukushima A, Yuasa S and Suzuki Y 2014 Nat. Mater. 13 50 [27] Zhang S, Levy P M, Marley A C and Parkin S S P 1997 Phys. Rev. Lett. 79 3744 [28] Jiang X, A Zang W and Mark D S 2005 Phys. Rev. B 72 014446 [29] NIST OOMMF userguide, 2018 [30] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 [31] Zhang X, Ezawa M, Xiao D, Zhao G. P, Liu Y and Zhou Y 2015 Nanotechnology 26 225701 [32] Osborn J A 1945 Phys. Rev. 67 351 [33] Zeng Z M, Finocchio G, Zhang B, Khalili A P, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L and Jiang H 2013 Sci. Rep. 3 1426 [34] Zhao W S, Chappert C, Javerliac V and Noziere J P 2009 IEEE Trans. Magn. 45 3784 [35] 90 nm BSIM4 model card for bulk CMOS. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|