Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044701    DOI: 10.1088/1674-1056/ac7a19
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow and clogging in a horizontal silo with a rotary obstacle

Cong-Cong Xu(徐聪聪), Qing-Fan Shi(史庆藩), Wei Liu(刘伟), and Ning Zheng(郑宁)
School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The external perturbation applied to a silo and the placement of an immobile obstacle before an exit are two common and effective ways to diminish clogging in the hopper/silo flow. Here, we incorporate the local perturbation into a fixed obstacle, and experimentally explore the effects of a rotary obstacle on clogging and the flowing characteristics in the horizontal silo flow driven by a conveyor belt. Even with a low spin rate, the total blocking probability that a particle constructs a stable blocking arch with its neighbors significantly drops. Correspondingly, the average flow rate of the particles through the exit abruptly rises, at least 1 order of magnitude better than that with an immobile obstacle and approaching the flow rate of continuous flow. The rotation enhances the breakage of clogging arches, which is responsible for improving the flowability in the horizontal silo. In addition, there always exists an optimal obstacle position at which the total blocking probability is minimal and the average flow rate peaks, regardless of the spin rate. Finally, clogging is relieved with the increase of the driving velocity of the conveyor belt, showing a "fast is fast" effect that is opposite to the "fast is slow" effect in other systems such as crowd evacuation and gravity-driven hoppers.
Keywords:  granular flow      clogging      obstacle      rotation  
Received:  28 April 2022      Revised:  03 June 2022      Accepted manuscript online:  18 June 2022
PACS:  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  47.57.Gc (Granular flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974044).
Corresponding Authors:  Wei Liu, Ning Zheng     E-mail:  liuwei73150@bit.edu.cn;ningzheng@bit.edu.cn

Cite this article: 

Cong-Cong Xu(徐聪聪), Qing-Fan Shi(史庆藩), Wei Liu(刘伟), and Ning Zheng(郑宁) Flow and clogging in a horizontal silo with a rotary obstacle 2023 Chin. Phys. B 32 044701

[1] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[2] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett. 86 71
[3] Zhou R and Chang H C 2005 J. Colloid Interface Sci.287 647
[4] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95
[5] Masuda T, Nishinari K and Schadschneider A 2014 Phys. Rev. Lett. 112 138701
[6] Saraf S and Franklin S V 2011 Phys. Rev. E 83 030301
[7] Thomas C C and Durian D J 2013 Phys. Rev. E 87 052201
[8] shour A, Wegner S, Trittel T, Börzsönyi T and Stannarius R 2017 Soft Matter 13 402
[9] Tang J and Behringer R P 2016 Europhys. Lett.114 34002
[10] Ashour A, Trittel T, Börzsönyi T and Stannarius R 2017 Phys. Rev. Fluids 2 123302
[11] Koivisto J and Durian D J 2017 Phys. Rev. E 95 032904
[12] Koivisto J, Korhonen M, Alava M, Ortiz C P, Durian D J and Puisto A 2017 Soft Matter 13 7657
[13] Arévalo R, Zuriguel I, Maza D and Garcimartín A 2014 Phys. Rev. E 89 042205
[14] Dorbolo S, Maquet L, Brandenbourger M, Ludewig F, Lumay G, Caps H, Vandewalle N, Rondia S, Mélard M, Loon J V, Dowson A and Vincent-Bonnieu S 2013 Granul. Matter. 15 263
[15] Endo K, Reddy K A and Katsuragi H 2017 Phys. Rev. Fluids 2 094302
[16] Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R and Maza D 2011 Phys. Rev. Lett. 107 278001
[17] Lozano C, Janda A, Garcimartín A, Maza D and Zuriguel I 2012 Phys. Rev. E 86 031306
[18] Mankoc C, Garcimartín A, Zuriguel I and Maza D 2009 Phys. Rev. E 80 011309
[19] Wassgren C R, Hunt M L, Freese P J, Palamara J and Brennen C E 2002 Phys. Fluids 14 3439
[20] Chen K, Stone M B, Barry R, Lohr M, McConville W, Klein K, Sheu B, Morss A J, Scheidemantel T and Schiffer P 2006 Phys. Rev. E 74 011306
[21] Janda A, Maza D, Garcimartín A, Kolb E, Lanuza J and Clément E 2009 Europhys. Lett. 87 24002
[22] Lindemann K and Dimon P 2000 Phys. Rev. E 62 5420
[23] Wen P P, Zheng N, Nian J W, Li L S and Shi Q F 2015 Sci. Rep. 5 9880
[24] Caitano R, Guerrero B V, González R E R, Zuriguel I and Garcimartín A 2021 Phys. Rev. Lett. 127 148002
[25] To K and Tai H T 2017 Phys. Rev. E 96 032906
[26] To K, Yen Y, Mo Y K and Huang J R 2019 Phys. Rev. E 100 012906
[27] Hernández-Delfin D, Pongó T, To K, Börzsönyi T and Hidalgo R C 2020 Phys. Rev. E 102 042902
[28] To K, Mo Y K, Pongó T and Börzsönyi T 2021 Phys. Rev. E 103 062905
[29] Yang S C and Hsiau S S 2001 Powder Technol. 120 244
[30] Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K and Nishinari K 2009 Phys. Rev. E 80 036110
[31] Echeverría-Huarte I, Zuriguel I and Hidalgo R C 2020 Phys. Rev. E 102 012907
[32] Feliciani C, Zuriguel I, Garcimartín A, Maza D and Nishinari K 2020 Sci. Rep. 10 15947
[33] Chen Z H, Wu Z X and Guan J Y 2021 Phys. Rev. E 103 062305
[34] Zhao Y X, Lu T T, Fu L B, Wu P and Li M F 2020 Saf. Sci. 122 104517
[35] Garcimartín A, Pastor J M, Ferrer L M, Ramos J J, Martín-Gómez C and Zuriguel I 2015 Phys. Rev. E 91 022808
[36] Zuriguel I, Olivares J, Pastor J M, Martín-Gómez C, Ferrer L M, Ramos J J and Garcimartín A 2016 Phys. Rev. E 94 032302
[37] Areán M G, Boschan A, Cachile M A and Aguirre M A 2020 Phys. Rev. E 101 022901
[38] Yu Q C, Zheng N and Shi Q F 2021 Phys. Rev. E 103 052902
[39] Patterson G A, Fierens P I, Sangiuliano Jimka F, König P G, Garcimartín A, Zuriguel I, Pugnaloni L A and Parisi D R 2017 Phys. Rev. Lett. 119 248301
[40] Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clément E, Maza D, Pagonabarraga I and Garcimartín A 2014 Sci. Rep. 4 7324
[41] Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L, Maza D, Parisi D R, Pugnaloni L A and Zuriguel I 2015 Phys. Rev. E 92 062817
[42] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Rev. 51 661
[43] Zuriguel I, Garcimartín A, Maza D, Pugnaloni L A and Pastor J M 2005 Phys. Rev. E 71 051303
[44] Haghani M and Sarvi M 2018 Transp. Res. Part B: Methodol. 107 253
[45] Sticco I M, Cornes F E, Frank G A and Dorso C O 2017 Phys. Rev. E 96 052303
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[3] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[4] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[5] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[8] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[9] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
[10] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[11] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[12] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[15] Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses
Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(7): 074203.
No Suggested Reading articles found!