ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Flow and clogging in a horizontal silo with a rotary obstacle |
Cong-Cong Xu(徐聪聪), Qing-Fan Shi(史庆藩), Wei Liu(刘伟)†, and Ning Zheng(郑宁)‡ |
School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract The external perturbation applied to a silo and the placement of an immobile obstacle before an exit are two common and effective ways to diminish clogging in the hopper/silo flow. Here, we incorporate the local perturbation into a fixed obstacle, and experimentally explore the effects of a rotary obstacle on clogging and the flowing characteristics in the horizontal silo flow driven by a conveyor belt. Even with a low spin rate, the total blocking probability that a particle constructs a stable blocking arch with its neighbors significantly drops. Correspondingly, the average flow rate of the particles through the exit abruptly rises, at least 1 order of magnitude better than that with an immobile obstacle and approaching the flow rate of continuous flow. The rotation enhances the breakage of clogging arches, which is responsible for improving the flowability in the horizontal silo. In addition, there always exists an optimal obstacle position at which the total blocking probability is minimal and the average flow rate peaks, regardless of the spin rate. Finally, clogging is relieved with the increase of the driving velocity of the conveyor belt, showing a "fast is fast" effect that is opposite to the "fast is slow" effect in other systems such as crowd evacuation and gravity-driven hoppers.
|
Received: 28 April 2022
Revised: 03 June 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
45.70.Mg
|
(Granular flow: mixing, segregation and stratification)
|
|
47.57.Gc
|
(Granular flow)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974044). |
Corresponding Authors:
Wei Liu, Ning Zheng
E-mail: liuwei73150@bit.edu.cn;ningzheng@bit.edu.cn
|
Cite this article:
Cong-Cong Xu(徐聪聪), Qing-Fan Shi(史庆藩), Wei Liu(刘伟), and Ning Zheng(郑宁) Flow and clogging in a horizontal silo with a rotary obstacle 2023 Chin. Phys. B 32 044701
|
[1] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487 [2] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett. 86 71 [3] Zhou R and Chang H C 2005 J. Colloid Interface Sci.287 647 [4] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95 [5] Masuda T, Nishinari K and Schadschneider A 2014 Phys. Rev. Lett. 112 138701 [6] Saraf S and Franklin S V 2011 Phys. Rev. E 83 030301 [7] Thomas C C and Durian D J 2013 Phys. Rev. E 87 052201 [8] shour A, Wegner S, Trittel T, Börzsönyi T and Stannarius R 2017 Soft Matter 13 402 [9] Tang J and Behringer R P 2016 Europhys. Lett.114 34002 [10] Ashour A, Trittel T, Börzsönyi T and Stannarius R 2017 Phys. Rev. Fluids 2 123302 [11] Koivisto J and Durian D J 2017 Phys. Rev. E 95 032904 [12] Koivisto J, Korhonen M, Alava M, Ortiz C P, Durian D J and Puisto A 2017 Soft Matter 13 7657 [13] Arévalo R, Zuriguel I, Maza D and Garcimartín A 2014 Phys. Rev. E 89 042205 [14] Dorbolo S, Maquet L, Brandenbourger M, Ludewig F, Lumay G, Caps H, Vandewalle N, Rondia S, Mélard M, Loon J V, Dowson A and Vincent-Bonnieu S 2013 Granul. Matter. 15 263 [15] Endo K, Reddy K A and Katsuragi H 2017 Phys. Rev. Fluids 2 094302 [16] Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R and Maza D 2011 Phys. Rev. Lett. 107 278001 [17] Lozano C, Janda A, Garcimartín A, Maza D and Zuriguel I 2012 Phys. Rev. E 86 031306 [18] Mankoc C, Garcimartín A, Zuriguel I and Maza D 2009 Phys. Rev. E 80 011309 [19] Wassgren C R, Hunt M L, Freese P J, Palamara J and Brennen C E 2002 Phys. Fluids 14 3439 [20] Chen K, Stone M B, Barry R, Lohr M, McConville W, Klein K, Sheu B, Morss A J, Scheidemantel T and Schiffer P 2006 Phys. Rev. E 74 011306 [21] Janda A, Maza D, Garcimartín A, Kolb E, Lanuza J and Clément E 2009 Europhys. Lett. 87 24002 [22] Lindemann K and Dimon P 2000 Phys. Rev. E 62 5420 [23] Wen P P, Zheng N, Nian J W, Li L S and Shi Q F 2015 Sci. Rep. 5 9880 [24] Caitano R, Guerrero B V, González R E R, Zuriguel I and Garcimartín A 2021 Phys. Rev. Lett. 127 148002 [25] To K and Tai H T 2017 Phys. Rev. E 96 032906 [26] To K, Yen Y, Mo Y K and Huang J R 2019 Phys. Rev. E 100 012906 [27] Hernández-Delfin D, Pongó T, To K, Börzsönyi T and Hidalgo R C 2020 Phys. Rev. E 102 042902 [28] To K, Mo Y K, Pongó T and Börzsönyi T 2021 Phys. Rev. E 103 062905 [29] Yang S C and Hsiau S S 2001 Powder Technol. 120 244 [30] Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K and Nishinari K 2009 Phys. Rev. E 80 036110 [31] Echeverría-Huarte I, Zuriguel I and Hidalgo R C 2020 Phys. Rev. E 102 012907 [32] Feliciani C, Zuriguel I, Garcimartín A, Maza D and Nishinari K 2020 Sci. Rep. 10 15947 [33] Chen Z H, Wu Z X and Guan J Y 2021 Phys. Rev. E 103 062305 [34] Zhao Y X, Lu T T, Fu L B, Wu P and Li M F 2020 Saf. Sci. 122 104517 [35] Garcimartín A, Pastor J M, Ferrer L M, Ramos J J, Martín-Gómez C and Zuriguel I 2015 Phys. Rev. E 91 022808 [36] Zuriguel I, Olivares J, Pastor J M, Martín-Gómez C, Ferrer L M, Ramos J J and Garcimartín A 2016 Phys. Rev. E 94 032302 [37] Areán M G, Boschan A, Cachile M A and Aguirre M A 2020 Phys. Rev. E 101 022901 [38] Yu Q C, Zheng N and Shi Q F 2021 Phys. Rev. E 103 052902 [39] Patterson G A, Fierens P I, Sangiuliano Jimka F, König P G, Garcimartín A, Zuriguel I, Pugnaloni L A and Parisi D R 2017 Phys. Rev. Lett. 119 248301 [40] Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clément E, Maza D, Pagonabarraga I and Garcimartín A 2014 Sci. Rep. 4 7324 [41] Pastor J M, Garcimartín A, Gago P A, Peralta J P, Martín-Gómez C, Ferrer L, Maza D, Parisi D R, Pugnaloni L A and Zuriguel I 2015 Phys. Rev. E 92 062817 [42] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Rev. 51 661 [43] Zuriguel I, Garcimartín A, Maza D, Pugnaloni L A and Pastor J M 2005 Phys. Rev. E 71 051303 [44] Haghani M and Sarvi M 2018 Transp. Res. Part B: Methodol. 107 253 [45] Sticco I M, Cornes F E, Frank G A and Dorso C O 2017 Phys. Rev. E 96 052303 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|