Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090306    DOI: 10.1088/1674-1056/19/9/090306
GENERAL Prev   Next  

Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation

Shi Pei-Ming(时培明)a)b)† , Han Dong-Ying(韩东颖)c), and Liu Bin(刘彬)b)
a Key Laboratory of Measurement Technology and Instrument of Hebei Province Yanshan University, Qinhuangdao 066004, China; b College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;  c College of Vehicles and Energy Yanshan University, Qinhuangdao 066004, China
Abstract  This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincaré map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.
Keywords:  relative rotation      nonlinear dynamical system      parametric excitation      chaotic control  
Received:  16 November 2009      Revised:  11 December 2009      Accepted manuscript online: 
PACS:  0340D  
  0313  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60704037), the Natural Science Foundation of Hebei Province, China (Grant No. F2010001317) and the Doctor Foundation of Yanshan University of China (Grant No. B451).

Cite this article: 

Shi Pei-Ming(时培明), Han Dong-Ying(韩东颖), and Liu Bin(刘彬) Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation 2010 Chin. Phys. B 19 090306

[1] Carmeli M 1985 Found. Phys. 15 175
[2] Carmeli M 1986 Int. J. Theor. Phys. 25 89
[3] Luo S K 1996 J. Beijing Inst. Technol. 16(S1) 154 (in Chinese)
[4] Luo S K 1998 Appl. Math. Mech. 19 45
[5] Fu J L, Chen X W and Luo S K 1999 Appl. Math. Mech. 20 1266
[6] Fu J L, Chen X W and Luo S K 2000 Appl. Math. Mech. 21 549
[7] Fang J H 2000 Acta Phys. Sin. 49 1028 (in Chinese)
[8] Fang J H and Zhao S Q 2001 Acta Phys. Sin. 50 390 (in Chinese)
[9] Fang J H 2001 Acta Phys. Sin. 50 1001 (in Chinese)
[10] Luo S K, Guo Y X and Chen X W 2001 Acta Phys. Sin. 50 2053 (in Chinese)
[11] Jia L Q 2003 Acta Phys. Sin. 52 1039 (in Chinese)
[12] Luo S K 2002 Chin. Phys. Lett. 19 449
[13] Luo S K, Chen X W and Guo Y X 2002 Chin. Phys. 11 429
[14] Luo S K, Chen X W and Guo Y X 2002 Chin. Phys. 11 523
[15] Luo S K, Fu J L and Chen X W 2001 Acta Phys. Sin. 50 383 (in Chinese)
[16] Fu J L, Chen L Q and Xue Y 2003 Acta Phys. Sin. 52 256 (in Chinese)
[17] Zhang K and Feng J 2005 Acta Phys. Sin. 54 2985 (in Chinese)
[18] Luo S K 2004 Acta Phys. Sin. 53 5 (in Chinese)
[19] Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese)
[20] Luo S K 2002 Acta Phys. Sin. 51 1416 (in Chinese)
[21] Luo S K, Chen X W and Fu J L 2001 Chin. Phys. 10 271
[22] Dong Q L and Liu B 2002 Acta Phys. Sin. 51 2191 (in Chinese)
[23] Dong Q L, Liu B, Wang K and Zhang C X 2004 Acta Phys. Sin. 53 337 (in Chinese)
[24] Zhao W and Liu B 2005 Acta Phys. Sin. 54 4543 (in Chinese)
[25] Zhao W, Liu B, Shi P M and Jiang J S 2005 Acta Phys. Sin. 54 3852 (in Chinese)
[26] Rook T E and Singh R 1995 J. Sound Vib. 182 303
[27] Asokanthan S F and Meehan P A 2000 J. Sound Vib. 233 297
[28] Kim T C, Rook T E and Singh R 2005 J. Sound Vib. 281 965
[29] El-Bassiouny A F 2006 Physica A 366 167
[30] Shi P M and Liu B 2007 Acta Phys. Sin. 56 3678 (in Chinese)
[31] Shi P M, Liu B and Liu S 2008 Acta Phys. Sin. 57 4675 (in Chinese)
[32] Shi P M, Liu B and Jiang J S 2009 Acta Phys. Sin. 58 2147 (in Chinese)
[33] Hou D X, Liu B and Shi P M 2009 Acta Phys. Sin. 58 5942 (in Chinese)
[34] Liu S, Liu B and Shi P M 2009 Acta Phys. Sin. 58 4383 (in Chinese)
[35] Shi P M, Liu B and Hou D X 2008 Acta Phys. Sin. 57 1321 (in Chinese)
[36] Awrejcewicz J and Pyryev Y 2006 Nonlinear Analysis 7 12
[37] Ge ZH M and Zhang A R 2007 Chaos, Solitons and Fractels 32 1791
[38] Sheu L J, Chen H K, Chen J H and Tam L M 2007 Chaos, Solitons and Fractels 32 1459
[39] Li X C, Xu W and Li R H 2008 Chin. Phys. B 17 557 endfootnotesize
[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Grazing bifurcation analysis of a relative rotation system with backlash non-smooth characteristic
Liu Shuang (刘爽), Wang Zhao-Long (王兆龙), Zhao Shuang-Shuang (赵双双), Li Hai-Bin (李海滨), Li Jian-Xiong (李建雄). Chin. Phys. B, 2015, 24(7): 074501.
[3] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Sun Xu-Bin (孙绪彬), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(1): 010501.
[4] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[5] Hopf bifurcation control for a coupled nonlinear relativerotation system with time-delay feedbacks
Liu Shuang (刘爽), Li Xue (李雪), Tan Shu-Xian (谈书贤), Li Hai-Bin (李海滨). Chin. Phys. B, 2014, 23(10): 104502.
[6] Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force
Tian Rui-Lan(田瑞兰), Yang Xin-Wei(杨新伟), Cao Qing-Jie(曹庆杰), and Wu Qi-Liang(吴启亮) . Chin. Phys. B, 2012, 21(2): 020503.
[7] Fractional-order permanent magnet synchronous motor and its adaptive chaotic control
Li Chun-Lai (李春来), Yu Si-Min (禹思敏), Luo Xiao-Shu (罗晓曙). Chin. Phys. B, 2012, 21(10): 100506.
[8] Pseudo analytical solution to time periodic stiffness systems
Wang Yan-Zhong(王延忠) and Zhou Yuan-Zi(周元子) . Chin. Phys. B, 2011, 20(4): 040501.
[9] Precise relative rotation sensing using slow light
Wang Nan(王楠), Zhang Yun-Dong(掌蕴东), Wang Hao(王号), Tian He(田赫), Qiu Wei(邱巍), Wang Jin-Fang(王金芳), and Yuan Ping(袁萍). Chin. Phys. B, 2010, 19(1): 014216.
[10] Parametric resonance and cooling on an atom chip
Yan Bo(颜波), Li Xiao-Lin(李晓林), Ke Min(柯敏), and Wang Yu-Zhu(王育竹). Chin. Phys. B, 2008, 17(3): 921-926.
[11] An observer based asymptotic trajectory control using a scalar state for chaotic systems
Yu Dong-Chuan (禹东川), Xia Lin-Hua (夏临华), Wang Dong-Qing (王冬青). Chin. Phys. B, 2006, 15(7): 1454-1459.
[12] A simple asymptotic trajectory control of full states of a unified chaotic system
Yu Dong-Chuan (禹东川), Wu Ai-Guo (吴爱国), Wang Dong-Qing (王冬青). Chin. Phys. B, 2006, 15(2): 306-309.
[13] Chaos and chaotic control in a fractional-order electronic oscillator
Gao Xin (高心), Yu Jue-Bang (虞厥邦). Chin. Phys. B, 2005, 14(5): 908-913.
[14] Adaptive backstepping control of the uncertain Lü system
Yu Yong-Guang (于永光), Zhang Suo-Chun (张锁春). Chin. Phys. B, 2002, 11(12): 1249-1253.
[15] ADAPTIVE NONLINEAR FEEDBACK CONTROL OF CHAOTIC SYSTEMS BASED ON REDUCED PARAMETER QUADRATIC PREDICTORS
Zhang Jia-shu (张家树), Wan Ji-hong (万继宏), Xiao Xian-ci (肖先赐). Chin. Phys. B, 2001, 10(2): 97-102.
No Suggested Reading articles found!