Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 025205    DOI: 10.1088/1674-1056/ac7207
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of magnetic field on power deposition in high magnetic field helicon experiment

Yan Zhou(周岩)1,2,3, Peiyu Ji(季佩宇)2,3,4, Maoyang Li(李茂洋)1,2,3, Lanjian Zhuge(诸葛兰剑)5, and Xuemei Wu(吴雪梅)1,2,3,†
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China;
3 The Key Laboratory of Thin Films of Jiangsu, Soochow University, Suzhou 215006, China;
4 School of Optoelectronic Engineering and Technology, Soochow University, Suzhou 215006, China;
5 Analysis and Testing Center, Soochow University, Suzhou 215123, China
Abstract  Based on high magnetic field helicon experiment (HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs, a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.
Keywords:  high magnetic field helicon experiment (HMHX)      HELIC code      magnetic field      power deposition  
Received:  23 January 2022      Revised:  19 May 2022      Accepted manuscript online:  23 May 2022
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.70.Ds (Electric and magnetic measurements)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975163 and 12175160) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Corresponding Authors:  Xuemei Wu     E-mail:  xmwu@suda.edu.cn

Cite this article: 

Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅) Influence of magnetic field on power deposition in high magnetic field helicon experiment 2023 Chin. Phys. B 32 025205

[1] Carter M D, Baity F W, Barber G C and Goulding R H 2002 Phys. Plasmas 9 5097
[2] Batishchev O V 2009 IEEE Trans. Plasma Sci. 37 1563
[3] Zhang Z H, Wu X M and Ning Z Y 2014 Plasma Sci. Technol. 16 352
[4] Carter M D, Baity J F W and Barber C C 2002 Phys. Plasmas 9 5097
[5] Ping L L, Zhang X J, Yang H, Xu G S, Chang L, Wu D S, Lv H, Zheng C Y, Peng J H, Jin H H, He C and Gan G H 2018 Acta Phys. Sin. 68 205201 (in Chinese)
[6] Aigrain P 1960 Proceedings of the International Conference on Semiconductor Physics Prague, August 29-Semtember 2, 1960, Prague, Czech Republic, p. 224
[7] Boswell R W 1984 Plasma Phys. Controlled Fusion 26 1147
[8] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
[9] Chen F F and Blackwell D D 1999 Phys. Rev. Lett. 82 2677
[10] Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[11] Krmer M, Enk T and Lorenz B 2000 Phys. Scripta T84 132
[12] Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19 105403
[13] Huang T Y, Jin C G, Yu J, Wu X M and Zhuge L J 2016 Sci. China Phys. Mech. Astron. 59 645201
[14] Chang L, Li Q C, Zhang H J, Li Y H, Wu Y, Zhang B L and Zhuang Z 2016 Plasma Sci. Technol. 18 848
[15] Chang L, Hu X Y, Gao L, Chen W, Wu X M, Sun X F, Hu N and Huang C X 2018 AIP Adv. 8 045016
[16] Mouzouris Y and Scharer J E 1996 IEEE Trans. Plasma Sci. 24 152
[17] Melazzi D, Curreli D, Manente M, Carlsson J and Pavarin D 2012 Com. Phys. Commun. 183 1182
[18] Melazzi D and Lancellotti V 2015 Plasma Sources Sci. Technol. 24 25024
[19] Li W Q, Zhao B and Wang G 2020 Acta Phys. Sin. 69 215201 (in Chinese)
[20] Zhang L, Zhang B L, Chang L, Li Y W and Duang P Z 2017 J. Pro. Technol. 38 2152 (in Chinese)
[21] Li W Q, Zhao B, Wang G and Xiang D 2020 Acta Phys. Sin. 69 115201 (in Chinese)
[22] Huang T Y, Ji P Y, Huang J J, Yu B and Wu X M 2021 Plasma Sci. Technol. 23 015403
[23] Ji P Y, Huang T Y, Chen J L, Zhuge L J and Wu X M 2021 Acta Phys. Sin. 70 097201 (in Chinese)
[24] Jin C G 2014 Radio frequency plasma discharge and materials processing (Ph. D. dissertation) (Suzhou: Soochow University) (in Chinese)
[25] Zhao G, Xiong Y Q, Ma C, Liu Z W and Cheng Q 2014 Acta Phys. Sin. 63 235202 (in Chinese)
[26] Chang L, Hole M J and Corr C S 2011 Phys. Plasmas 18 042106
[27] Cheng Y G, Cheng M S, Wang M G and Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)
[28] Vidal C R, Cooper J and Smith E W 1973 Astrophysical Journal Supplement 25 37
[29] Wiese W L, Kelleher D E and Paquette D R 1972 Phys. Rev. A. 6 1132
[30] Kelleher D E and Wiese W L 1973 Phys. Rev. Lett. 31 1431
[31] Huang T Y, Jin C G, Wu M Z, Zhuge L J and Wu X M 2014 Appl. Mech. Mater. 513-517 28
[1] Measurements of Majorana transition frequency shift in caesium atomic fountain clocks
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2023, 32(4): 040602.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[7] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[8] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[9] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[12] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[13] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[14] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[15] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
No Suggested Reading articles found!