Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020501    DOI: 10.1088/1674-1056/ac6945
GENERAL Prev   Next  

Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system

Huamei Yang(杨华美)1 and Yuangen Yao(姚元根)2,†
1 School of Intelligent Construction, Wuchang University of Technology, Wuhan 430223, China;
2 Department of Physics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
Abstract  There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance (LCR). However, realization of a reliable exclusive disjunction (XOR) through LCR has not been reported. Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability $P$ of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity $D$ of a chaotic force. Namely, success probability $P$ displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
Keywords:  stochastic resonance      logical stochastic resonance      logical chaotic resonance      XOR logic      triple-well potential system  
Received:  23 January 2022      Revised:  20 April 2022      Accepted manuscript online:  22 April 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039).
Corresponding Authors:  Yuangen Yao     E-mail:  yyg@mail.hzau.edu.cn

Cite this article: 

Huamei Yang(杨华美) and Yuangen Yao(姚元根) Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system 2023 Chin. Phys. B 32 020501

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[2] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10
[3] He Z W, Yao C G, Liu S and Qian Y 2021 Nonlinear Dyn. 106 2547
[4] Yao Y G and Ma J 2018 Cogn. Neurodyn. 12 343
[5] Zhou P, Yao Z, Ma J and Zhu Z G 2021 Chaos Soliton. Fract. 145 110751
[6] Zhang X F and Ma J 2021 J. Zhejiang Univ. Sci. A 22 707
[7] Fu Y X, Kang Y M and Chen G R 2020 Front. Comput. Neurosci. 14 24
[8] Xie Y, Yao Z, Hu X K and Ma J 2021 Chin. Phys. B 30 120510
[9] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[10] Yao Y G, Yi M and Hou D J 2017 Int. J. Mod. Phys. B 31 1750204
[11] Nakao H, Arai K and Kawamura Y 2007 Phys. Rev. Lett. 98 184101
[12] Li Y F and Kish L B 2006 Fluct. Noise Lett. 6 L127
[13] Gammaitoni L 2007 Appl. Phys. Lett. 91 224104
[14] Murali K, Sinha S, Ditto W L and Bulsara A R 2009 Phys. Rev. Lett. 102 104101
[15] Cheng G H, Liu W D, Gui R and Yao Y G 2020 Chaos Soliton. Fract. 131 109514
[16] Yao Y G 2021 Pramana J. Phys. 95 77
[17] Bulsara A R, Dari A, Ditto W L, Murali K and Sinha S 2010 Chem. Phys. 375 424
[18] Hou M J, Yang J H, Shi S and Liu H G 2020 Eur. Phys. J. Plus 135 747
[19] Wang N and Song A G 2014 Eur. Phys. J. B 87 117
[20] Wang Z X, Qiao Z J, Zhou L G and Zhang L 2017 Chin. J. Phys. 55 252
[21] Zhang L, Song A G and He J 2010 Phys. Rev. E 82 051106
[22] Zhang L and Song A G 2018 Physica A 503 958
[23] Dari A, Kia B, Bulsara A R and Ditto W L 2011 Chaos 21 047521
[24] Wu J, Xu Y, Wang H Y and Kurths J 2017 Chaos 27 063105
[25] Zhang L, Zheng W B, Xie F and Song A G 2017 Phys. Rev. E 96 052203
[26] Murali K, Rajamohamed I, Sinha S, Ditto W L and Bulsara A R 2009 Appl. Phys. Lett. 95 194102
[27] Guerra D N, Bulsara A R, Ditto W L, Sinha S, Murali K and Mohanty P 2010 Nano Lett. 10 1168
[28] Pfeffer P, Hartmann F, Hoefling S, Kamp M and Worschech L 2015 Phys. Rev. Appl. 4 014011
[29] Hartmann F, Forchel A, Neri I, Gammaitoni L and Worschech L 2011 Appl. Phys. Lett. 98 032110
[30] Worschech L, Hartmann F, Kim T Y, Hoefling S, Kamp M, Forchel A, Ahopelto J, Neri I, Dari A and Gammaitoni L 2010 Appl. Phys. Lett. 96 042112
[31] Zhang L, Zheng W B, Min F H and Song A G 2019 Phys. Lett. A 383 617
[32] Wang N, Zheng B, Zheng H Y and Yang B 2018 Nonlinear Dyn. 94 295
[33] Zheng B, Wang N, Zheng H Y, Yu Z B and Wang J P 2016 Opt. Lett. 41 4967
[34] Yao Y G, Cheng G H and Gui R 2020 Chaos 30 073125
[35] Gui R, Wang Y, Yao Y G and Cheng G H 2020 Chaos Soliton. Fract. 138 109952
[36] Gupta A, Sohane A, Kohar V, Murali K and Sinha S 2011 Phys. Rev. E 84 055201
[37] Kohar V, Murali K and Sinha S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2866
[38] Wang N and Song A G 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 2736
[39] Cheng G H, Zheng S T, Dong J H, Xu Z Q and Gui R 2021 Chaos 31 053105
[40] Gui R, Li J X, Yao Y G and Cheng G H 2021 Chaos Soliton. Fract. 148 111043
[41] Sharma A, Kohar V, Shrimali M D and Sinha S 2014 Nonlinear Dyn. 76 431
[42] Wang N, Song A G and Yang B 2017 Eur. Phys. J. B 90 117
[43] Zhang L, Zheng W B and Song A G 2018 Chaos 28 043117
[44] Wang N and Song A G 2015 Neurocomputing 155 80
[45] Yang D X, Gu F S, Feng G J, Yang Y M and Ball A 2015 Chin. Phys. B 24 110502
[46] Yao Y G 2021 Chin. Phys. B 30 060503
[47] Aravind M, Murali K and Sinha S 2018 Phys. Lett. A 382 1581
[48] Wu H, Jiang H J and Hou Z H 2012 Chin. J. Chem. Phys. 25 70
[49] Das M and Kantz H 2019 Phys. Rev. E 100 032108
[50] Storni R, Ando H, Aihara K, Murali K and Sinha S 2012 Phys. Lett. A 376 930
[51] Zhang H Q, Xu Y, Xu W and Li X C 2012 Chaos 22 043130
[52] Zhang H Q, Yang T T, Xu W and Xu Y 2014 Nonlinear Dyn. 76 649
[53] Gui R, Yang Y D, Yao Y G and Cheng G H 2020 Chin. J. Phys. 68 178
[54] Carroll T L and Pecora L M 1993 Phys. Rev. Lett. 70 576
[55] Baysal V, Sarac Z and Yilmaz E 2019 Nonlinear Dyn. 97 1275
[56] Baysal V and Yilmaz E 2021 Appl. Math. Comput. 411 126540
[57] Baysal V, Erkan E and Yilmaz E 2021 Philos. Trans. A Math. Phys. Eng. Sci. 379 20200237
[58] He Y Z, Fu Y X, Qiao Z J and Kang Y M 2021 Chaos Soliton. Fract. 142 110536
[59] Yao Y G and Ma J 2020 Int. J. Bifurc. Chaos 30 2050196
[60] Yao Y G 2022 Nonlinear Dyn. 107 3887
[61] Yao Y G, Ma J, Gui R and Cheng G H 2021 Chaos 31 023103
[62] Yao Y G, Ma J, Gui R and Cheng G H 2021 Chaos Soliton. Fract. 152 111339
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[3] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[4] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[5] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[6] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[7] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[8] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[9] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[10] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[11] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[12] Analysis of weak signal detection based on tri-stable system under Levy noise
Li-Fang He(贺利芳), Ying-Ying Cui(崔莹莹), Tian-Qi Zhang(张天骐), Gang Zhang(张刚), Ying Song(宋莹). Chin. Phys. B, 2016, 25(6): 060501.
[13] Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems
Jian Liu(刘健), You-Guo Wang(王友国), Qi-Qing Zhai(翟其清), Jin Liu(刘进). Chin. Phys. B, 2016, 25(10): 100501.
[14] Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction
Wang Zhi-Yun (汪志云), Chen Pei-Jie (陈培杰), Zhang Liang-Ying (张良英). Chin. Phys. B, 2015, 24(5): 059801.
[15] Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters
Yang Ding-Xin (杨定新), Gu Feng-Shou (谷丰收), Feng Guo-Jin (冯国金), Yang Yong-Min (杨拥民), Andrew Ball. Chin. Phys. B, 2015, 24(11): 110502.
No Suggested Reading articles found!