|
|
Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system |
Huamei Yang(杨华美)1 and Yuangen Yao(姚元根)2,† |
1 School of Intelligent Construction, Wuchang University of Technology, Wuhan 430223, China; 2 Department of Physics, College of Science, Huazhong Agricultural University, Wuhan 430070, China |
|
|
Abstract There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance (LCR). However, realization of a reliable exclusive disjunction (XOR) through LCR has not been reported. Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability $P$ of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity $D$ of a chaotic force. Namely, success probability $P$ displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
|
Received: 23 January 2022
Revised: 20 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039). |
Corresponding Authors:
Yuangen Yao
E-mail: yyg@mail.hzau.edu.cn
|
Cite this article:
Huamei Yang(杨华美) and Yuangen Yao(姚元根) Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system 2023 Chin. Phys. B 32 020501
|
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453 [2] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10 [3] He Z W, Yao C G, Liu S and Qian Y 2021 Nonlinear Dyn. 106 2547 [4] Yao Y G and Ma J 2018 Cogn. Neurodyn. 12 343 [5] Zhou P, Yao Z, Ma J and Zhu Z G 2021 Chaos Soliton. Fract. 145 110751 [6] Zhang X F and Ma J 2021 J. Zhejiang Univ. Sci. A 22 707 [7] Fu Y X, Kang Y M and Chen G R 2020 Front. Comput. Neurosci. 14 24 [8] Xie Y, Yao Z, Hu X K and Ma J 2021 Chin. Phys. B 30 120510 [9] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775 [10] Yao Y G, Yi M and Hou D J 2017 Int. J. Mod. Phys. B 31 1750204 [11] Nakao H, Arai K and Kawamura Y 2007 Phys. Rev. Lett. 98 184101 [12] Li Y F and Kish L B 2006 Fluct. Noise Lett. 6 L127 [13] Gammaitoni L 2007 Appl. Phys. Lett. 91 224104 [14] Murali K, Sinha S, Ditto W L and Bulsara A R 2009 Phys. Rev. Lett. 102 104101 [15] Cheng G H, Liu W D, Gui R and Yao Y G 2020 Chaos Soliton. Fract. 131 109514 [16] Yao Y G 2021 Pramana J. Phys. 95 77 [17] Bulsara A R, Dari A, Ditto W L, Murali K and Sinha S 2010 Chem. Phys. 375 424 [18] Hou M J, Yang J H, Shi S and Liu H G 2020 Eur. Phys. J. Plus 135 747 [19] Wang N and Song A G 2014 Eur. Phys. J. B 87 117 [20] Wang Z X, Qiao Z J, Zhou L G and Zhang L 2017 Chin. J. Phys. 55 252 [21] Zhang L, Song A G and He J 2010 Phys. Rev. E 82 051106 [22] Zhang L and Song A G 2018 Physica A 503 958 [23] Dari A, Kia B, Bulsara A R and Ditto W L 2011 Chaos 21 047521 [24] Wu J, Xu Y, Wang H Y and Kurths J 2017 Chaos 27 063105 [25] Zhang L, Zheng W B, Xie F and Song A G 2017 Phys. Rev. E 96 052203 [26] Murali K, Rajamohamed I, Sinha S, Ditto W L and Bulsara A R 2009 Appl. Phys. Lett. 95 194102 [27] Guerra D N, Bulsara A R, Ditto W L, Sinha S, Murali K and Mohanty P 2010 Nano Lett. 10 1168 [28] Pfeffer P, Hartmann F, Hoefling S, Kamp M and Worschech L 2015 Phys. Rev. Appl. 4 014011 [29] Hartmann F, Forchel A, Neri I, Gammaitoni L and Worschech L 2011 Appl. Phys. Lett. 98 032110 [30] Worschech L, Hartmann F, Kim T Y, Hoefling S, Kamp M, Forchel A, Ahopelto J, Neri I, Dari A and Gammaitoni L 2010 Appl. Phys. Lett. 96 042112 [31] Zhang L, Zheng W B, Min F H and Song A G 2019 Phys. Lett. A 383 617 [32] Wang N, Zheng B, Zheng H Y and Yang B 2018 Nonlinear Dyn. 94 295 [33] Zheng B, Wang N, Zheng H Y, Yu Z B and Wang J P 2016 Opt. Lett. 41 4967 [34] Yao Y G, Cheng G H and Gui R 2020 Chaos 30 073125 [35] Gui R, Wang Y, Yao Y G and Cheng G H 2020 Chaos Soliton. Fract. 138 109952 [36] Gupta A, Sohane A, Kohar V, Murali K and Sinha S 2011 Phys. Rev. E 84 055201 [37] Kohar V, Murali K and Sinha S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 2866 [38] Wang N and Song A G 2016 IEEE Trans. Neural Netw. Learn. Syst. 27 2736 [39] Cheng G H, Zheng S T, Dong J H, Xu Z Q and Gui R 2021 Chaos 31 053105 [40] Gui R, Li J X, Yao Y G and Cheng G H 2021 Chaos Soliton. Fract. 148 111043 [41] Sharma A, Kohar V, Shrimali M D and Sinha S 2014 Nonlinear Dyn. 76 431 [42] Wang N, Song A G and Yang B 2017 Eur. Phys. J. B 90 117 [43] Zhang L, Zheng W B and Song A G 2018 Chaos 28 043117 [44] Wang N and Song A G 2015 Neurocomputing 155 80 [45] Yang D X, Gu F S, Feng G J, Yang Y M and Ball A 2015 Chin. Phys. B 24 110502 [46] Yao Y G 2021 Chin. Phys. B 30 060503 [47] Aravind M, Murali K and Sinha S 2018 Phys. Lett. A 382 1581 [48] Wu H, Jiang H J and Hou Z H 2012 Chin. J. Chem. Phys. 25 70 [49] Das M and Kantz H 2019 Phys. Rev. E 100 032108 [50] Storni R, Ando H, Aihara K, Murali K and Sinha S 2012 Phys. Lett. A 376 930 [51] Zhang H Q, Xu Y, Xu W and Li X C 2012 Chaos 22 043130 [52] Zhang H Q, Yang T T, Xu W and Xu Y 2014 Nonlinear Dyn. 76 649 [53] Gui R, Yang Y D, Yao Y G and Cheng G H 2020 Chin. J. Phys. 68 178 [54] Carroll T L and Pecora L M 1993 Phys. Rev. Lett. 70 576 [55] Baysal V, Sarac Z and Yilmaz E 2019 Nonlinear Dyn. 97 1275 [56] Baysal V and Yilmaz E 2021 Appl. Math. Comput. 411 126540 [57] Baysal V, Erkan E and Yilmaz E 2021 Philos. Trans. A Math. Phys. Eng. Sci. 379 20200237 [58] He Y Z, Fu Y X, Qiao Z J and Kang Y M 2021 Chaos Soliton. Fract. 142 110536 [59] Yao Y G and Ma J 2020 Int. J. Bifurc. Chaos 30 2050196 [60] Yao Y G 2022 Nonlinear Dyn. 107 3887 [61] Yao Y G, Ma J, Gui R and Cheng G H 2021 Chaos 31 023103 [62] Yao Y G, Ma J, Gui R and Cheng G H 2021 Chaos Soliton. Fract. 152 111339 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|