Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018902    DOI: 10.1088/1674-1056/ac65f1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment

Guang-Han Peng(彭光含)1,†, Chun-Li Luo(罗春莉)1, Hong-Zhuan Zhao(赵红专)2, and Hui-Li Tan(谭惠丽)1
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 College of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  A novel lattice hydrodynamic model is proposed by integrating the cooperative deviation of density and optimal flux under vehicle to X (V2X) environment. According to the theoretical analysis, the stability conditions and the mKdV equations affected by the cooperative deviation of traffic information are explored. And the density wave, hysteresis loop and energy consumption of the traffic flow have been investigated via numerical simulation. The results indicate that the cooperative deviation of density and optimal flux can effectively alleviate the traffic congestion. More importantly, our new consideration can reduce fuel consumption and exhaust emission under the V2X environment.
Keywords:  traffic flow      lattice hydrodynamic model      cooperative deviation  
Received:  12 February 2022      Revised:  18 March 2022      Accepted manuscript online:  11 April 2022
PACS:  89.40.-a (Transportation)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61963008), Guangxi Natural Science Foundation (Grant No. 2022GXNSFDA035080), Guangxi Innovation-Driven Development Special Fund Project (Grant No. GUIKEAA19254034-3), and Doctor Scientific Research Startup Project Foundation of Guangxi Normal University, China (Grant No. 2018BQ007).
Corresponding Authors:  Guang-Han Peng     E-mail:  pengguanghan@163.com

Cite this article: 

Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽) A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment 2023 Chin. Phys. B 32 018902

[1] Ge H X, Cheng R J and Li Z P 2012 Phys. A 387 5239
[2] Ge H X, Dai S Q and Dong L Y 2005 Phys. A 365 543
[3] Li Y F, Zhong Z Y, Zhang K B and Zheng T X 2019 Phys. A 533 122022
[4] Sun D H, Liao X Y and Peng G H 2011 Phys. A 390 631
[5] Li Y F, Zhang L, Zheng T X and Li Y G 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 224
[6] Li X Q, Fang K L and Peng G H 2016 Phys. A 458 315
[7] Chang Y Y, He Z T and Cheng R J 2019 Phys. A 523 326
[8] Qin S D, He Z T and Cheng R J 2018 Phys. A 509 809
[9] Zhao H Z, Xia D X and Yang S H 2019 Phys. A 540 123066
[10] Mei Y R, Zhao X Q and Qian Y Q 2021 Phys. A 575 126048
[11] Nagatani T 1998 Phys. A 261 599
[12] Qi X, Ge H X and Cheng R 2019 Phys. A 525 714
[13] Wang Q and Ge H X 2019 Phys. A 513 438
[14] Zhang G and Peng G H 2019 Phys. A 526 121012
[15] Zhang G, Zhang Y and Pan D B 2019 Phys. A 534 122029
[16] Liu C Q, He Y G and Peng G H 2019 Phys. A 535 122421
[17] Redhu P and Gupta A K 2015 Commun. Nonlinear Sci. Numer. Simulat. 27 263
[18] Pan D B, Zhang G and Jiang S 2021 Phys. A 563 125440
[19] Zhang G 2018 Phys. A 505 1103
[20] Wang Y, Cheng R and Ge H X 2017 Phys. A 479 478
[21] Zhang Y, Wang S and Pan D B 2021 Phys. A 561 125269
[22] Wang Q Y, Cheng R J and Ge H X 2019 Phys. Lett. A 383 1879
[23] Redhu P and S 2018 Phys. A 492 1473
[24] Redhu P and Arv 2015 Phys. A 421 249
[25] Wang T, Cheng R and Ge H X 2019 Phys. A 527 121425
[26] Kaur D and Sharma S 2020 Phys. A 539 122913
[27] Wang T, Zang R D and Xu K Y 2019 Phys. A 526 120711
[28] Zhang G, Sun D H and Liu H 2017 Phys. A 486 806
[29] Li L X, Cheng R J and Ge H X 2021 Phys. A 561 125295
[30] Wang J F, Sun F X and Ge H X 2019 Phys. A 515 119
[31] Chang Y Y, He Z T and Cheng R J 2019 Phys. A 514 522
[32] Li X Q, Fang K L and Peng G H 2017 Phys. A 468 315
[33] Kaur R and Sharma S 2017 Phys. A 471 59
[34] Nagatani T 1999 Phys. A 265 297
[35] Wang T, Cheng R and Ge H X 2019 Phys. A 533 121915
[36] Sun F, Chow A and Lo S M 2018 Phys. A 511 389
[37] Zhang G, Sun D H and Zhao M 2017 Commun. Nonlinear Sci. Numer. Simulat. 54 347
[38] Zhang G and Sun D H 2015 Phys. A 422 16
[39] Gupta A K and Redhu P 2013 Phys. A 392 5622
[40] Zhu C Q, Zhong S Q and Ma S F 2019 Commun. Nonlinear Sci. Numer. Simulat. 73 229
[41] Tian J F, Yuan Z Z and Jia B 2012 Phys. A 391 4476
[42] Gupta A K and Redhu P 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1600
[43] Jiang C T, Cheng R J and Ge H X 2018 Phys. A 506 900
[44] Sun D H and Zhang G 2018 Commun. Nonlinear Sci. Numer. Simulat. 56 287
[45] Yang S H and Li C G 2016 Phys. A 463 394
[46] Chang Y Y and Cheng R J 2019 Phys. A 531 121751
[47] Rakha H, Yue H and Dion F 2011 Can. J. Civil. Eng. 38 1274
[48] Tang T Q, Huang H J and Shang H Y 2015 Transport. Res. D 41 423
[1] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[2] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[3] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[4] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[5] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[6] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[7] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[8] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[9] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[10] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[11] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[12] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[13] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[14] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[15] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
No Suggested Reading articles found!