Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018903    DOI: 10.1088/1674-1056/ac6867
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding

Pengli Lu(卢鹏丽) and Wei Chen(陈玮)
School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks, solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.
Keywords:  complex networks      centrality      joint nonnegative matrix factorization      graph embedding      smoothness strategy  
Received:  03 March 2022      Revised:  01 April 2022      Accepted manuscript online:  20 April 2022
PACS:  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62162040 and 11861045).
Corresponding Authors:  Pengli Lu, Wei Chen     E-mail:  lupengli88@163.com;chenwei_9711@163.com

Cite this article: 

Pengli Lu(卢鹏丽) and Wei Chen(陈玮) Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding 2023 Chin. Phys. B 32 018903

[1] Gallos L K, Makse H A and Sigman M 2012 Proc. Natl. Acad. Sci. USA 109 2825
[2] Wang X Y and Zhao T F 2017 Commun. Nonlinear. Sci. Numer. Simul. 48 63
[3] Xu D G, XU X Y, Xie Y F and Yang C H 2017 Commun. Nonlinear Sci. Numer. Simul. 48 200
[4] Helbing D, Brockmann D and Chadefaux T 2015 J. Stat. Phys. 158 735
[5] Sheikhahmadi A, Nematbakhsh M A and Zareie A 2017 Physica A 486 517
[6] Hu K, HU T and Tang Y 2010 Chin. Phys. B 19 080206
[7] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[8] PastorSatorras R and PastorSatorras A 2002 Phys. Rev. E 65 036104
[9] Freeman L C 1978 Soc. Netw. 1 215
[10] Fei L G, Zhang Q and Deng Y 2018 Physica A 512 1044
[11] Zareie A, Sheikhahmadi A and Jalili M 2019 Future Gener. Comput. Syst. 94 120
[12] Zareie A, Sheikhahmadi A, Jalili M and Fasaei M S K 2020 Knowl. Based Syst. 194 10885
[13] Yang X H, Xiong Z, Ma F, Chen X Z, Ruan Z Y, Jiang P and XU X L 2021 Physica A 573 125971
[14] Freeman L C 1977 Sociometry 40 35
[15] Sabidussi G 1966 Psychometrika 31 581
[16] Kitsak M, Kitsak L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[17] Zareie A and Sheikhahmadi A 2018 Expert Syst. Appl. 93 200
[18] Zhao J, Wang Y C and Deng Y 2020 Chaos, Solitons and Fractals 133 0960
[19] Ullah A, Wang B, Sheng J and Sun Z 2021 Sci. Rep. 11 6173
[20] Sheng J, Dai J Y, Wang B, Duan G, Long J, Zhang J, Guan K, Hu S, Chen L and Guan W H 2020 Physica A 541 0378
[21] Zhang J L, Fu Y J, Cheng L and Yang Y Y 2021 Physica A 571 125791
[22] Lee D D and Seung H S 1999 Nature 401 788
[23] Du Y X, Hu Y, Mahadevan S, Gao C and Deng Y 2014 Physica A 399 57
[24] Yang Y Z, Yu L, Zhou Z L and Chen Y 2019 Physica A 526 121118
[25] Yan X L, Cui Y P and Ni S J 2020 Chin. Phys. B 29 048902
[26] Yang Y Z, Yu L, Zhou Z L, Chen Y and Kou T 2019 Math. Probl. Eng. 2019 1
[27] Grover A and Leskovec J 2016 the 22nd ACM SIGKDD International Conference 2016 p. 855
[28] Biggs N 1974 Algebraic Graph Theory (New York: the Press Syndicate of the University of Cambridge) p. 9
[29] Wang Y C 2021 Diagital Technology and Application 39
[30] Xue B G, Li S C, Yu R and Zhao Q 2019 Appl. Math. Comput. 340 156
[31] Horn R A 1990 Proc. Symp. Appl. Math 40 87
[32] Petersen K B and Pedersen M S 2008 The Matrix Cookbook
[33] Zachary W W 1977 J. Anthropol. Res. 33 452
[34] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E and Dawson S 2003 Behav. Ecol. Sociobiol 54 396
[35] Gleiser P M and Danon L 2003 Adv. Complex Syst. 6 565
[36] Lv Z W, Zhao N, Xiong F and Chen N 2019 Physica A 523 488
[37] Newman M E 2006 Phys. Rev. E 74 036104
[38] Guimera R, Danon L, Diaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[39] Jeong H, Mason S P and Barabasi A L 2001 Nature 411 41
[40] Zareie A, Sheikhahmadi A and Jalili M 2019 Future Gener. Comp. Sy. 94 120
[41] Mcauley J and Leskovec J 2012 Proceedings of the 26th International Conference on Neural Information Processing Systems 2012
[42] Huang C Y, Lee C L and Wen T H 2013 J. Syst. Software 86 801
[43] Kendall M G 1945 Biometrika 33 239
[44] Bae J and Kim S 2014 Physica A 395 549
[45] Webber W, Moffat A and Zobel J 2010 Acm T. Inform. Syst. 28 1
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[3] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[6] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[7] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[8] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[9] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[10] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[11] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[12] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!