|
|
Application of Galerkin spectral method for tearing mode instability |
Wu Sun(孙武)1, Jiaqi Wang(王嘉琦)1,†, Lai Wei(魏来)2, Zhengxiong Wang(王正汹)2, Dongjian Liu(刘东剑)1, and Qiaolin He(贺巧琳)3 |
1 College of Physics&Key Laboratory of High Energy Density Physics and Technology, Sichuan University, Chengdu 610065, China; 2 School of Physics, Dalian University of Technology, Dalian 116024, China; 3 School of Mathematics, Sichuan University, Chengdu 610065, China |
|
|
Abstract Magnetic reconnection and tearing mode instability play a critical role in many physical processes. The application of Galerkin spectral method for tearing mode instability in two-dimensional geometry is investigated in this paper. A resistive magnetohydrodynamic code is developed, by the Galerkin spectral method both in the periodic and aperiodic directions. Spectral schemes are provided for global modes and local modes. Mode structures, resistivity scaling, convergence and stability of tearing modes are discussed. The effectiveness of the code is demonstrated, and the computational results are compared with the results using Galerkin spectral method only in the periodic direction. The numerical results show that the code using Galerkin spectral method individually allows larger time step in global and local modes simulations, and has better convergence in global modes simulations.
|
Received: 31 December 2021
Revised: 15 March 2022
Accepted manuscript online: 23 March 2022
|
PACS:
|
02.70.Hm
|
(Spectral methods)
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.35.Vd
|
(Magnetic reconnection)
|
|
52.65.Kj
|
(Magnetohydrodynamic and fluid equation)
|
|
Fund: Project supported by the Sichuan Science and Technology Program (Grant No. 22YYJC1286), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB112005), and the National Natural Science Foundation of China (Grant Nos. 12075048 and 11925501). |
Corresponding Authors:
Jiaqi Wang
E-mail: jacky@scu.edu.cn
|
Cite this article:
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳) Application of Galerkin spectral method for tearing mode instability 2022 Chin. Phys. B 31 110203
|
[1] Giovanelli R G 1947 Mon. Not. R. Astron. Soc. 107 338 [2] Giovanelli R G 1946 Nature 158 81 [3] Tsuneta S 1996 Astrophys. J. 456 840 [4] Burch J L and Phan T D 2016 Geophys. Res. Lett. 43 8327 [5] Wyper P F, Antiochos S K and DeVore C R 2017 Nature 544 452 [6] Dungey J W 1961 Phys. Rev. Lett. 6 47 [7] Boozer A H 2012 Phys. Plasmas 19 092902 [8] Angelopoulos V, Artemyev A, Phan T D and Miyashita Y 2020 Nat. Phys. 16 317 [9] Phan T D, Eastwood J P, Shay M A, et al. 2018 Nature 557 202 [10] Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 [11] Rutherford P H 1973 Phys. Fluids 16 1903 [12] Von Goeler S, Stodiek W and Sauthoff N 1974 Phys. Rev. Lett. 33 1201 [13] Wang J, Xiao C, Wang X, Ji X and Liu Y 2012 Plasma Phys. Control. Fusion 54 122001 [14] Kim G, Yun G S, Woo M, Park H K and the KSTAR Team 2018 Plasma Phys. Control. Fusion 60 035009 [15] Parker E N 1957 J. Geophys. Res. 62 509 [16] Petschek H E and Thorne R M 1967 Astrophys. J. 147 1157 [17] Carmichael H 1964 The Physics of Solar Flares, Proceedings of AAS-NASA Symposium, 1964, Washington, D.C., USA, p. 451 [18] Sturrock P A 1966 Nature 211 695 [19] Hirayama T 1974 Sol. Phys. 34 323 [20] Kopp R A and Pneuman G W 1976 Sol. Phys. 50 85 [21] Su Y, Veronig A M, Holman G D, Dennis B R, Wang T, Temmer M and Gan W 2013 Nat. Phys. 9 489 [22] Dahlin J T, Antiochos S K and DeVore C R 2019 Astrophys. J. 879 96 [23] Angelopoulos V, McFadden J P, Larson D, Carlson C W, Mende S B, Frey H, Phan T, Sibeck D G, Glassmeier K H, Auster U, Donovan E, Mann I R, Rae I J, Russell C T, Runov A, Zhou X Z and Kepko L 2008 Science 321 931 [24] Priest E R 1985 Rep. Prog. Phys. 48 955 [25] Wesson J 2004 Tokamaks, 3rd edn. (Oxford: Clarendon Press) pp. 374-390 [26] Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 [27] Canuto C, Hussaini M Y, Quarteroni A and Zang T A 1987 Spectral Methods in Fluid Dynamics (New York: Springer-Verlag) pp. 3-7, 183-278 [28] Canuto C, Hussaini M Y, Quarteroni A and Zang T A 2007 Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) (Berlin: Springer-Verlag) pp. 39-430 [29] Le Maȋtre O P and Knio O M 2010 Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics (New York: Springer-Verlag) pp. 107-339 [30] Serre E and Pulicani J P 2001 Computers & Fluids 30 491 [31] Glasser A H, Sovinec C R, Nebel R A, Gianakon T A, Plimpton S J, Chu M S, Schnack D D and the NIMROD Team 1999 Plasma Phys. Control. Fusion 41 A747 [32] Lütjens H and Luciani J F 2008 J. Comput. Phys. 227 6944 [33] Wang S and Ma Z W 2015 Phys. Plasmas 22 122504 [34] Brennan D P, La Haye R J, Turnbull A D, Chu M S, Jensen T H, Lao L L, Luce T C, Politzer P A, Strait E J, Kruger S E and Schnack D D 2003 Phys. Plasmas 10 1643 [35] Granetz R, Whyte D G, Izzo V A, Biewer T, Reinke M L, Terry J, Bader A, Bakhtiari M, Jernigan T and Wurden G 2006 Nucl. Fusion 46 1001 [36] Lutjens H and Luciani J F 2010 J. Comput. Phys. 229 8130 [37] Halpern F D, Lütjens H and Luciani J F 2011 Phys. Plasmas 18 102501 [38] Zhang W, Wang S and Ma Z W 2017 Phys. Plasmas 24 062510 [39] Zhang W, Ma Z W, Zhang H W and Zhu J 2019 Phys. Plasmas 26 042514 [40] Bi H L, Wei L, Fan D M, Zheng S and Wang Z X 2016 Acta Phys. Sin 65 225201 (in Chinese) [41] Pritchett P L, Lee Y C and Drake J F 1980 Phys. Fluids 23 1368 [42] Drake J F 1978 Phys. Fluids 21 1777 [43] Yagi M, Yoshida S, Itoh S I, Naitou H, Nagahara H, Leboeuf J N, Itoh K, Matsumoto T, Tokuda S and Azumi M 2005 Nucl. Fusion 45 900 [44] Gottlieb D and Hesthaven J S 2007 Spectral Methods for Time-Dependent Problems (Cambridge: Cambridge University Press) pp. 34-42 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|