Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110202    DOI: 10.1088/1674-1056/ac7a16
GENERAL Prev   Next  

Diffusion dynamics in branched spherical structure

Kheder Suleiman1,2, Xue-Lan Zhang(张雪岚)2, Sheng-Na Liu(刘圣娜)1, and Lian-Cun Zheng(郑连存)2,†
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Diffusion on a spherical surface with trapping is a common phenomenon in cell biology and porous systems. In this paper, we study the diffusion dynamics in a branched spherical structure and explore the influence of the geometry of the structure on the diffusion process. The process is a spherical movement that occurs only for a fixed radius and is interspersed with a radial motion inward and outward the sphere. Two scenarios govern the transport process in the spherical cavity: free diffusion and diffusion under external velocity. The diffusion dynamics is described by using the concepts of probability density function (PDF) and mean square displacement (MSD) by Fokker-Planck equation in a spherical coordinate system. The effects of dead ends, sphere curvature, and velocity on PDF and MSD are analyzed numerically in detail. We find a transient non-Gaussian distribution and sub-diffusion regime governing the angular dynamics. The results show that the diffusion dynamics strengthens as the curvature of the spherical surface increases and an external force is exerted in the same direction of the motion.
Keywords:  anomalous diffusion      Fokker-Planck equation      branched spherical structure  
Received:  21 April 2022      Revised:  07 June 2022      Accepted manuscript online:  18 June 2022
PACS:  02.50.Fz (Stochastic analysis)  
  02.50.Ey (Stochastic processes)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.60.-k (Transport processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772046 and 81870345).
Corresponding Authors:  Lian-Cun Zheng     E-mail:

Cite this article: 

Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存) Diffusion dynamics in branched spherical structure 2022 Chin. Phys. B 31 110202

[1] Graham T 1829 Q. J. Sci. Lit. Art 27 74
[2] Graham T 1850 Philos. Trans. R. Soc. London 140 1
[3] Mehrer H 2007 Diffusion in Solids (Heidelberg: Springer Berlin) pp. 65-77
[4] Stein W D 1986 Transport and diffusion across cell membranes (Academic Press) pp. 69-112
[5] Schuss Z, Basnayake K and Holcman D 2019 Phys. Life Rev. 28 52
[6] Sibatov R T and Uchaikin V V 2015 J. Comput. Phys. 293 409
[7] Goldstein J I and Moren A E 1978 Metall. Trans. A 9 1515
[8] Höfling F and Franosch T 2013 Rep. Prog. Phys. 76 046602
[9] Ben-Avraham D and Havlin S 2000 Diffusion and reactions in fractals and disordered systems (Cambridge University Press) pp. 98-118
[10] Rammal R and Toulouse G 1983 J. Phys. Lett. 44 13
[11] Ziman T A L 1979 J. Phys. C: Solid State Phys. 12 2645
[12] Ben-Avraham D and Havlin S 1982 J. Phys. A: Math. Gen. 15 L691
[13] Weiss G H and Havlin S 1987 Philos. Mag. B Phys. Condens. Matter 56 941
[14] Weiss G H and Havlin S 1986 Physica A 134 474
[15] Arkhincheev V E and Baskin E M 1991 Sov. Phys. JETP 73 161
[16] Méndez V, Iomin A, Horsthemke W and Campos D 2017 J. Stat. Mech. Theory Exp. 2017 063205
[17] Méndez V and Iomin A 2013 Chaos, Solitons & Fractals 53 46
[18] Iomin A 2012 Phys. Rev. E 86 032101
[19] Arkhincheev V E, Kunnen E and Baklanov M R 2011 Microelectron. Eng. 88 694
[20] Saxton M J 2007 Biophys. J. 92 1178
[21] Iomin A and Méndez V 2016 Chaos, Solitons & Fractals 82 142
[22] Dzhanoev A R and Sokolov I M 2018 Chaos, Solitons & Fractals 106 330
[23] Baskin E and Iomin A 2004 Phys. Rev. Lett. 93 120603
[24] Sandev T, Iomin A and Kocarev L 2020 Phys. Rev. E 102 042109
[25] Singh R K, Sandev T, Iomin A and Metzler R 2021 J. Phys. A: Math. Theor. 54 404006
[26] Wang Z, Lin P and Wang E 2021 Chaos, Solitons & Fractals 148 111009
[27] Sandev T, Domazetoski V, Iomin A and Kocarev L 2021 Mathematics 9 221
[28] Klaus C, Raghunathan K, Dibenedetto E and Kenworthy A K 2016 Mol. Biol. Cell 27 3937
[29] Sbalzarini I F, Hayer A, Helenius A and Koumoutsakos P 2006 Biophys. J. 90 878
[30] Castro-Villarreal P and Sevilla F J 2018 Phys. Rev. E 97 052605
[31] Ramírez-Garza O A, Méndez-Alcaraz J M and González-Mozuelos P 2021 Phys. Chem. Chem. Phys. 23 8661
[32] Castro-Villarreal P 2010 J. Stat. Mech. Theory Exp. 2010 P8006
[33] Wittig K, Nikrityuk P A, Schulze S and Richter A 2017 AIChE J. 63 1638
[34] Gov N S 2006 Phys. Rev. E 73 041918
[35] Weiss M, Hashimoto H and Nilsson T 2003 Biophys. J. 84 4043
[36] Berg O G, Mahmutovic A, Marklund E and Elf J 2016 J. Phys. A. Math. Theor. 49 364002
[37] Lee D S, Rieger H and Bartha K 2006 Phys. Rev. Lett. 96 058104
[38] Kobayashi H, Watanabe R and Choyke P L 2014 Theranostics 4 81
[39] Monta?ez-Rodríguez A, Quintana C and González-Mozuelos P 2021 Physica A 574 126012
[40] Grebenkov D S 2008 J. Chem. Phys. 128 134702
[41] Koppel D E, Sheetz M P and Schindler M 1980 Biophys. J. 30 187
[42] Jiang C, Li B, Dou S X, Wang P Y and Li H 2020 Chin. Phys. Lett. 37 078701
[43] Jiang C, Yang M, Li W, Dou S X, Wang P Y and Li H 2022 Science 25 104210
[44] Dave D D and Jha B K 2021 Netw. Model. Anal. Heal. Informatics Bioinforma. 10 1
[45] Palombo M, Gabrielli A, Servedio V D P, Ruocco G and Capuani S 2013 Sci. Rep. 3 1
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[3] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[4] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[5] Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成). Chin. Phys. B, 2017, 26(1): 010502.
[6] Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
Naruemon Rueangkham, Charin Modchang. Chin. Phys. B, 2016, 25(4): 048201.
[7] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[8] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[9] Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise
Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国). Chin. Phys. B, 2012, 21(12): 120501.
[10] Environment-dependent continuous time random walk
Lin Fang(林方) and Bao Jing-Dong(包景东). Chin. Phys. B, 2011, 20(4): 040502.
[11] Fokker-planck study of tokamak electron cyclotron resonance heating
Shi Bing-Ren (石秉仁), Long Yong-Xing (龙永兴), Dong Jia-Qi (董家齐), Li Wen-Zhong (郦文忠), Jiao Yi-Ming (焦一鸣), Wang Ai-Ke (王爱科). Chin. Phys. B, 2003, 12(11): 1251-1256.
No Suggested Reading articles found!