Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090501    DOI: 10.1088/1674-1056/ac6b2e
GENERAL Prev   Next  

High Chern number phase in topological insulator multilayer structures: A Dirac cone model study

Yi-Xiang Wang(王义翔)1,2,† and Fu-Xiang Li(李福祥)2,‡
1 School of Science, Jiangnan University, Wuxi 214122, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  We employ the Dirac cone model to explore the high Chern number (C) phases that are realized in the magnetic-doped topological insulator (TI) multilayer structures by Zhao et al. [Nature 588 419 (2020)]. The Chern number is calculated by capturing the evolution of the phase boundaries with the parameters, then the Chern number phase diagrams of the TI multilayer structures are obtained. The high-C behavior is attributed to the band inversion of the renormalized Dirac cones, along with which the spin polarization at the $\varGamma$ point will get increased. Moreover, another two TI multilayer structures as well as the TI superlattice structures are studied.
Keywords:  topological insulator multilayer      Chern number      phase diagram  
Received:  06 April 2022      Revised:  25 April 2022      Accepted manuscript online:  28 April 2022
PACS:  05.30.Fk (Fermion systems and electron gas)  
  73.20.-r (Electron states at surfaces and interfaces)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
  68.65.Ac (Multilayers)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804122 and 11905054), the China Postdoctoral Science Foundation (Grant No. 2021M690970), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Yi-Xiang Wang, Fu-Xiang Li     E-mail:  wangyixiang@jiangnan.edu.cn;fuxiangli@hnu.edu.cn

Cite this article: 

Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥) High Chern number phase in topological insulator multilayer structures: A Dirac cone model study 2022 Chin. Phys. B 31 090501

[1] Thouless D J, Kohmoto M, Nightingale M P and Nijs M den 1982 Phys. Rev. Lett. 49 405
[2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[3] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[4] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[5] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[6] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[7] Zhang J, Zhao B, Zhou T and Yang Z 2016 Chin. Phys. B 25 117308
[8] Kou X, Pan L, Wang J, Fan Y, Choi E S, Lee W L, Nie T, Murata K, Shao Q, Zhang S C and Wang K L 2015 Nat. Commun. 6 8474
[9] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[10] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang T, Zhang S C, He K, Ma X, Xue Q K and Wang Y 2015 Phys. Rev. Lett. 115 126801
[11] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[12] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[13] Rienks E D L, Wimmer S, Sánchez-Barriga J, Caha O, Mandal P S, Ruzicka J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalicka J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O and Springholz G 2019 Nature 576 423
[14] Deng H, Chen Z, Woloś A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński L, Park K, Georgescu A B, Cano J and Krusin-Elbaum L 2021 Nat. Phys. 17 36
[15] Zhao Y F, Zhang R, Mei R, Zhou L, Yi H, Zhang Y Q, Yu J, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X and Chang C Z 2020 Nature 588 419
[16] Wang Y X and Li F 2021 Phys. Rev. B 104 035202
[17] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[18] Liu C X, Qi X L, Zhang H J, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 82 045122
[19] Wang J, Lian B, Zhang H, Xu Y and Zhang S C 2013 Phys. Rev. Lett. 111 136801
[20] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
[21] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[22] Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
[23] Lei C, Chen S and MacDonald A H 2020 Proc. Natl. Acad. Sci. USA 117 27224
[24] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[25] Wang Y X and Li F 2018 Europhys. Lett. 123 37001
[26] Jiang H, Qiao Z, Liu H and Niu Q 2012 Phys. Rev. B 85 045445
[27] Guo W T, Huang L, Yang Y, Huang Z and Zhang J M 2021 New J. Phys. 23 083030
[28] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[29] Wang W, Ou Y, Liu C, Wang Y, He K, Xue Q K and Wu W 2018 Nat. Phys. 10 1038
[30] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[31] Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T and Hosono H 2019 Sci. Adv. 5 eaax9989
[32] Vidal R C, Zeugner A, Facio J I, et al. 2019 Phys. Rev. X 9 041065
[33] Klimovskikh I I, Otrokov M M, Estyunin D, et al. 2020 npj Quantum Mater. 5 54
[34] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Sci. Adv. 3 eaao1669
[35] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801
[1] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[2] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[3] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[4] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[5] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[6] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[7] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[8] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[9] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[10] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[11] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[12] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[13] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[14] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[15] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
No Suggested Reading articles found!