|
|
Non-universal Fermi polaron in quasi two-dimensional quantum gases |
Yue-Ran Shi(石悦然)1, Jin-Ge Chen(陈金鸽)1, Kui-Yi Gao(高奎意)1,†, and Wei Zhang(张威)1,2,3,‡ |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract We consider an impurity problem in a quasi-two-dimensional Fermi gas, where a spin-down impurity is immersed in a Fermi sea of N spin-up atoms. Using a variational approach and an effective two-channel model, we obtain the energy for a wide range of interaction strength and for various different mass ratios between the impurity and the background fermion in the context of heteronuclear mixture. We demonstrate that in a quasi-two-dimensional Fermi gas there exists a transition of the ground state from polaron in the weakly interacting region to molecule in the strongly interacting region. The critical interaction strength of the polaron-molecule transition is non-universal and depends on the particle density of the background Fermi sea. We also investigate the excited repulsive polaron state, and find similar non-universal behavior.
|
Received: 25 October 2021
Revised: 03 January 2022
Accepted manuscript online: 19 January 2022
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
Fund: We thank support from the National Key R&D Program of China (Grant No. 2018YFA0306501), the National Natural Science Foundation of China (Grant Nos. 11522436, 11774425, and 12074428), and the Beijing Natural Science Foundation (Grant No. Z180013). |
Corresponding Authors:
Kui-Yi Gao, Wei Zhang
E-mail: kgao@ruc.edu.cn;wzhangl@ruc.edu.cn
|
Cite this article:
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威) Non-universal Fermi polaron in quasi two-dimensional quantum gases 2022 Chin. Phys. B 31 080305
|
[1] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463 [2] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [3] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [4] Paredes B, Widera A, Murg V, Mandel O, Folling S, Cirac I, Shlyapnikov G V, Hansch T W and Bloch I 2004 Nature 429 277 [5] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125 [6] Liao Y A, Rittner A S C, Paprotta T, Li W, Partridge G B, Hulet R G, Baur S K and Mueller E J 2010 Nature 467 567 [7] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118 [8] Murthy P A, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M G, Wenz A N, Zürn G and Jochim S 2015 Phys. Rev. Lett. 115 010401 [9] Feld M, Fröhlich B, Vogt E, Koschorreck M and Köhl M 2011 Nature 480 75 [10] Murthy P A, Neidig M, Klemt R, Bayha L, Boettcher I, Enss T, Holten M, Zürn G, Preiss P M and Jochim S 2018 Science 359 452 [11] Fortagh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235 [12] Dyke P, Kuhnle E D, Whitlock S, Hu H, Mark M, Hoinka S, Lingham M, Hannaford P and Vale C J 2011 Phys. Rev. Lett. 106 105304 [13] Dyke P, Fenech K, Peppler T, Lingham M G, Hoinka S, Zhang W, Peng S G, Mulkerin B, Hu H, Liu X J and Vale C J 2016 Phys. Rev. A 93 011603 [14] Gillen J I, Bakr W S, Peng A, Unterwaditzer P, Fölling S and Greiner M 2009 Phys. Rev. A 80 021602 [15] Kohl M, Moritz H, Stöferle T, Günter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403 [16] Stöferle T, Moritz H, Günter K, Köhl M and Esslinger T 2006 Phys. Rev. Lett. 96 030401 [17] Ries M G, Wenz A N, Zürn G, Bayha L, Boettcher I, Kedar D, Murthy P A, Neidig M, Lompe T and Jochim S 2015 Phys. Rev. Lett. 114 230401 [18] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151 [19] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403 [20] Zwierlein M W, et al. 2004 Phys. Rev. Lett. 92 120403 [21] Chin C, et al. 2004 Science 305 1128 [22] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [23] Zhang R, Cheng Y, Zhai H and Zhang P 2015 Phys. Rev. Lett. 115 135301 [24] Pagano G, Mancini M, Cappellini G, Livi L, Sias C, Catani J, Inguscio M and Fallani L 2015 Phys. Rev. Lett. 115 265301 [25] Höfer M, et al. 2015 Phys. Rev. Lett. 115 265302 [26] Levinsen J and Parish M M 2014 arXiv:1408.2737 [27] Turlapov A V and Kagan M Y 2017 J. Phys. Cond. Matt. 29 383004 [28] Fröhlich B, Feld M, Vogt E, Koschorreck M, Zwerger W and Köhl M 2011 Phys. Rev. Lett. 106 105301 [29] Martiyanov K, Makhalov V and Turlapov A 2010 Phys. Rev. Lett. 105 030404 [30] Sommer A T, Cheuk L W, Ku M J H, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 108 045302 [31] Zhang Y, Ong W, Arakelyan I and Thomas J E 2012 Phys. Rev. Lett. 108 235302 [32] Petrov D S and Shlyapnikov G V 2001 Phys. Rev. A 64 012706 [33] Prokof'ev N and Svistunov B 2008 Phys. Rev. B 77 020408 [34] Prokof'ev N V and Svistunov B V 2008 Phys. Rev. B 77 125101 [35] Chevy F 2006 Phys. Rev. A 74 063628 [36] Yi W and Zhang W 2012 Phys. Rev. Lett. 109 140402 [37] Zhou L, Cui X and Yi W 2014 Phys. Rev. Lett. 112 195301 [38] Combescot R, Giraud S and Leyronas X 2009 Europhys. Lett. 88 60007 [39] Mora C and Chevy F 2009 Phys. Rev. A 80 033607 [40] Punk M, Dumitrescu P T and Zwerger W 2009 Phys. Rev. A 80 053605 [41] Mathy C J M, Parish M M and Huse D A 2011 Phys. Rev. Lett. 106 166404 [42] Parish M M 2011 Phys. Rev. A 83 051603 [43] Levinsen J and Baur S K 2012 Phys. Rev. A 86 041602 [44] Parish M M and Levinsen J 2013 Phys. Rev. A 87 033616 [45] Song Y and Cai X 2018 Chin. Phys. Lett. 35 110301 [46] Yin H, Xie T, Ji A and Sun Q 2021 Chin. Phys. B 30 106702 [47] Shi Y, Lu Z, Wang J and Zhang W 2019 Acta Phys. Sin 68 040305 (in Chinese) [48] Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M and Köhl M 2012 Nature 485 619 [49] Kestner J P and Duan L M 2006 Phys. Rev. A 74 053606 [50] Kestner J P and Duan L M 2007 Phys. Rev. A 76 063610 [51] Zhang W, Lin G D and Duan L M 2008 Phys. Rev. A 77 063613 [52] Cheng C, Kangara J, Arakelyan I and Thomas J E 2016 Phys. Rev. A 94 031606 [53] Cetina M, Jag M, Lous R S, Fritsche I, Walraven J T M, Grimm R, Levinsen J, Parish M M, Schmidt R, Knap M and Demler E 2016 Science 354 96 [54] Ness G, Shkedrov C, Florshaim Y, Diessel O, Milczewski J, Schmidt R and Sagi Y 2020 Phys. Rev. X 10 041019 [55] Bruun G M and Pethick C J 2004 Phys. Rev. Lett. 92 140404 [56] Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Denschlag J H, Grimm R, Simoni A, Tiesinga E, Williams C J and Julienne P S 2005 Phys. Rev. Lett. 94 103201 [57] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602 [58] Schmidt R, Enss T, Pietilä V and Demler E 2012 Phys. Rev. A 85 021602 [59] Ngampruetikorn V, Levinsen J and Parish M M 2012 Europhys. Lett. 98 30005 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|