Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 115202    DOI: 10.1088/1674-1056/21/11/115202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dark lump excitations in superfluid Fermi gases

Xu Yan-Xia (徐艳霞), Duan Wen-Shan (段文山 )
Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. Kadomtsev-Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime, Bose-Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Keywords:  superfluid Fermi gas      deep BEC regime      unitarity      dark lump excitation  
Received:  19 March 2012      Revised:  26 April 2012      Accepted manuscript online: 
PACS:  52.35.Sb (Solitons; BGK modes)  
  52.25.Xz (Magnetized plasmas)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91026005 and 11047010), the Natural Science Foundation of Northwest Normal University of China (Grant No. NWNU-KJCXGC-03-48).
Corresponding Authors:  Duan Wen-Shan     E-mail:  Duanws@nwnu.edu.cn

Cite this article: 

Xu Yan-Xia (徐艳霞), Duan Wen-Shan (段文山 ) Dark lump excitations in superfluid Fermi gases 2012 Chin. Phys. B 21 115202

[1] O'Hara K M, Hemmer S L, Gehm M E, Granade S R and Thomas J E 2002 Science 298 2179
[2] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
[3] Greiner M, Regal C A and Jin D S 2003 Nature 426 537
[4] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201
[5] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2004 Phys. Rev. Lett. 93 200404
[6] Dong H and Ma Y L 2009 Chin. Phys. B 18 715
[7] Heiselberg H 2004 Phys. Rev. Lett. 93 040402
[8] Wu B, Liu J and Niu Q 2002 Phys. Rev. Lett. 88 034101
[9] Dalfovo F, Giorgini S, Pitaevskii L and Stringari S 1999 Rev. Mod. Phys. 71 463
[10] Zhang J M, Cui F C, Zhou D L and Liu W M 2009 Phys. Rev. A 79 033401
[11] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[12] Liu J, Zhang C, Raizen M G and Niu Q 2006 Phys. Rev. A 73 013601
[13] Liu J, Wang W, Zhang C, Niu Q and Li B 2005 Phys. Rev. A 72 063623
[14] Li B, Li Y Q, Chen Y, Zhang X F and Liu W M 2008 Phys. Rev. A 78 023608
[15] Wu Y and Yang X X 2003 Phys. Rev. A 68 013608
[16] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[17] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[18] Wen W, Shen S Q and Huang G X 2010 Phys. Rev. B 81 014528
[19] Manini N and Salasnich L 2005 Phys. Rev. A 71 033625
[20] Hu H, Minguzzi A, Liu X and Tosi M P Phys. Rev. Lett. 93 190403
[21] Salasnich L, Manini N and Toigo F Phys. Rev. A 77 043609
[22] Spuntarelli A, Pieri P and Strinati G C 2007 Phys. Rev. Lett. 99 040401
[23] Wu X, Deng D and Guo Q 2011 Chin. Phys. B 20 084201
[24] Yang S J, Wu Q S, Zhang S N and Feng S P 2008 Phys. Rev. A 77 033621
[25] Yang S J, Wu Q S, Feng S P, Wen Y C and Yu Y 2008 Phys. Rev. A 77 035602
[26] Yu H, Peng J and Jin B 2010 Chin. Phys. B 19 087203
[27] Wang P, Fu Z, Chai S and Zhang J 2011 Chin. Phys. B 20 103401
[28] Scott T F, Ballagh R J and Burnett K 1998 J. Phys. B 31 L329
[29] Wang W Y, Duan W S, Sun J A and Yang Y 2011 Eur. Phys. J. B 84 283
[30] Zhou L, Kong L B and Zhan M S 2008 Chin. Phys. B 17 1601
[31] Ancilotto F, Salasnich L and Toigo F 2009 Phys. Rev. A 79 033627
[32] Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
[33] Liu C, Hu K, Hu T and Tang Y 2011 Chin. Phys. B 20 010309
[34] Wen W and Huang G 2009 Phys. Rev. A 79 023605
[35] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[36] Huang G X and Zhu S H 2002 Chin. Phys. Lett. 19 17
[37] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
[38] Huang G X, Makarov V A and Velarde M G 2003 Phys. Rev. A 67 023604
[39] Görlitz A, Vogells J M, Leanhardt A E, Raman C, Gustavson T L, AboShaeer J R, Chikkatur A P, Gupta S, Inouye S, Rosenband T and Ketterle W 2001 Phys. Rev. Lett. 87 130402
[40] Adhikari S K, Lu H and Pu H 2009 Phys. Rev. A 80 063607
[41] Cao S, Ma Y and Huang G 2009 Phys. Rev. A 79 013620
[42] Cheng X P, Lin J and Yao J M 2009 Chin. Phys. B 18 0391
[43] Ren X C and Guo L X 2008 Chin. Phys. B 17 2491
[44] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[45] Gino B and Pelinovsky D E 2008 Scholarpedia 3 6539
[46] Berger K M and Milewski P A 2000 SIAM J. Appl. Math. 61 731
[47] Duan W S, Chen J H, Yang H J, Shi Y R and Wang H Y 2006 Chin. Phys. Lett. 23 2000
[48] Shi Y R, Zhang J, Yang H J, Duan W S and Lonngren K E 2011 Chin. Phys. B 20 015205
[49] Dinkel J N, Setzer C, Rawal S and Lonngren K E 2001 Chaos Soliton. Fract. 12 91
[50] Xu Y X and Duan W S 2011 Chin. Phys. Lett. 28 125203
[51] Wen W and Huang G 2007 Phys. Lett. A 362 331
[1] Condensation of Fermions in the double-well potential
Chen Xin-Wei (陈欣委), Liu Zhong-Qiang (刘中强), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(2): 026701.
[2] Tunneling dynamics of superfluid Fermi gas in a triple-well potential
Gou Xue-Qiang (苟学强), Meng Hong-Juan (蒙红娟), Wang Wen-Yuan (王文元), Duan Wen-Shan (段文山). Chin. Phys. B, 2013, 22(8): 080307.
No Suggested Reading articles found!