CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors |
Jianan Wei(魏佳男)1,2,†, Yang Li(李洋)2, Wenlong Liao(廖文龙)2, Fang Liu(刘方)2, Yonghong Li(李永宏)2, Jiancheng Liu(刘建成)3, Chaohui He(贺朝会)2, and Gang Guo(郭刚)3 |
1 Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 400060, China; 2 School of Nuclear Science and technology, Xi'an Jiaotong University, Xi'an 710049, China; 3 National Innovation Center of Radiation Application, China Institute of Atomic Energy, Beijing 102413, China |
|
|
Abstract We investigate the angular dependence of proton-induced single event transient (SET) in silicon-germanium heterojunction bipolar transistors. Experimental results show that the overall SET cross section is almost independent of proton incident angle. However, the proportion of SET events with long duration and high integral charge collection grows significantly with the increasing angle. Monte Carlo simulations demonstrate that the integral cross section of proton incident events with high ionizing energy deposition in the sensitive volume tends to be higher at larger incident angles, which is associated with the angular distribution of proton-induced secondary particles and the geometry of sensitive volume.
|
Received: 31 December 2021
Revised: 08 March 2022
Accepted manuscript online: 14 March 2022
|
PACS:
|
61.80.Ed
|
(γ-ray effects)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
85.50.Gk
|
(Non-volatile ferroelectric memories)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775167 and 12105252) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-bsh0246). |
Corresponding Authors:
Jianan Wei
E-mail: weijianan93@163.com
|
Cite this article:
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚) Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors 2022 Chin. Phys. B 31 086106
|
[1] Cressler J D 2010 IEEE Trans. Device. Mater. Rel. 10 437 [2] Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992 [3] Sutton A K, Haugerud B M, Yuan L B M, et al. 2004 IEEE Trans. Nucl. Sci. 51 3736 [4] Cressler J D 2005 Proc. IEEE 93 1559 [5] Fleetwood Z E, Cardoso A S, Song I, et al. 2014 IEEE Trans. Nucl. Sci. 61 2915 [6] Pruvost, S, Delcourt, S, Telliez, I, et al. 2005 IEEE Electron Device Lett. 26 105 [7] Cressler J D 1998 IEEE Trans. Microwave Theor. Technol. 46 572 [8] Schroter M, Rosenbaum T, Chevalier P, et al. 2017 Proc. IEEE 105 1068 [9] Lourenco N E, Fleetwood Z E, Ildefonso A, et al. 2017 IEEE Trans. Nucl. Sci. 64 406 [10] Montes E J, Reed R A, Pellish J A, et al. 2008 IEEE Trans. Nucl. Sci. 55 1581 [11] Varadharajaperumal M, Guofu N, Krithivasan R, et al. 2004 IEEE Trans. Nucl. Sci. 50 2191 [12] Marshall P W, Carts M A, Campbell A, et al. 2001 IEEE Trans. Nucl. Sci. 47 2669 [13] Marshall, P, Carts M, Currie, S, et al. 2005 IEEE Trans. Nucl. Sci. 52 2446 [14] Najafizadeh L, Phillips S D, Moen K A, et al. 2009 IEEE Trans. Nucl. Sci. 56 3469 [15] Pellish J A, Reed R A, McMorrow D, et al. 2009 IEEE Trans. Nucl. Sci. 56 3078 [16] Vizkelethy G, Phillips S D, Najafizadeh L, et al. 2010 Nucl. Instrum. Methods Phys. Res. B 268 2092 [17] Pellish J A, Reed R A, Sutton A K, et al. 2007 IEEE Trans. Nucl. Sci. 54 2322 [18] Wei J, He C, Li P, et al. 2019 Microelectron. Reliability 95 28 [19] Schwank J R, Shaneyfelt M R, Baggio J, et al. 2006 IEEE Trans. Nucl. Sci. 53 3122 [20] Wei J N, Li Y, Yang W T, et al. 2020 Sci. China Technol. Sci. 63 851 [21] Zhang J, Guo Q, Guo H, et al. 2016 IEEE Trans. Nucl. Sci. 63 1251 [22] Liu M H, Lu W, Ma W Y, et al. 2016 Chin. Phys. C 40 036003 [23] Zhang J, Guo H, Zhang F, et al. 2017 Sci. China Inf. Sci. 60 120404 [24] Reed R A, Marshall P W, Pickel J C, et al. 2004 IEEE Trans. Nucl. Sci. 50 2184 [25] Wilcox E P, Phillips S D, Cheng P, et al. 2010 IEEE Trans. Nucl. Sci. 57 3293 [26] Jung S, McMorrow D, Buchner S P, et al. 2014 IEEE Trans. Nucl. Sci. 61 3193 [27] Ildefonso A, Warner J H, Cressler J D, et al. 2020 IEEE Trans. Nucl. Sci. 67 71 [28] Wei J N, He C H, Li P, et al. 2019 Chin. Phys. B 28 076106 [29] Pellish J A, Reed R A, Schrimpf R D, et al. 2006 IEEE Trans. Nucl. Sci. 53 3298 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|