|
|
Semiclassical investigation of Coulomb focusing effects in atomic above-threshold ionization with elliptically polarized laser fields |
Chuan-Liang Wang(王传亮)1, Li-Xin Xia(夏立新)1, Hong-Bin Yao(姚洪斌)2, Wen-Liang Li(李文亮)2 |
1 School of Physics and Electrical Engineering, Kashgar University, Kashgar 844006, China;
2 Department of Physics, Xinjiang Institute of Engineering, Urumqi 830091, China |
|
|
Abstract We investigate atomic above-threshold ionization in elliptically polarized strong laser fields with a semiclassical approach. With increasing laser intensity, the Coulomb focusing (CF) effects are found to become stronger in both parallel and perpendicular directions with respect to the polarization plane. The dependence of CF effects on tunnel exit, initial transverse momentum distribution and laser electric field is analyzed. It was revealed that the effects of tunnel exit are most prominent with variation of the laser intensity, and the other two factors both play non-negligible roles. Our results provide a deeper insight to the recent experiments of Coulomb asymmetry [Shafir D, et al., 2013 Phys. Rev. Lett. 111 023005 and Li M, et al., 2013 Phys. Rev. Lett. 111 023006].
|
Received: 13 November 2016
Revised: 22 January 2017
Accepted manuscript online:
|
PACS:
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
31.15.xg
|
(Semiclassical methods)
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547218, 11564020, and 11504314). |
Corresponding Authors:
Wen-Liang Li
E-mail: wenliangli@vip.126.com
|
Cite this article:
Chuan-Liang Wang(王传亮), Li-Xin Xia(夏立新), Hong-Bin Yao(姚洪斌), Wen-Liang Li(李文亮) Semiclassical investigation of Coulomb focusing effects in atomic above-threshold ionization with elliptically polarized laser fields 2017 Chin. Phys. B 26 043201
|
[1] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[2] |
DiMauro L F and Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79
|
[3] |
Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
|
[4] |
Corkum P B, Burnett N H, and Brunel F 1989 Phys. Rev. Lett. 62 1259
|
[5] |
Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[6] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[7] |
Paulus G G, Becker W, Nicklich N and Walther H 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L703
|
[8] |
Moshammer R, Ullrich J, Feuerstein B, Fischer D, Dorn A, Schroter C, Lopez-urrutia J R C and Hoehr C 2003 Phys. Rev. Lett. 91 113003
|
[9] |
Chen J and Nam C H 2002 Phys. Rev. A 66 053415
|
[10] |
Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P and DiMauro L F 2009 Nat. Phys. 5 335
|
[11] |
Quan W, Lin Z Z, Wu M Y, Kang H P, Liu H P, Liu X J, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y X, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett. 103 093001
|
[12] |
Lin Z Z, Wu M Y, Quan W, Liu X J, Chen J and Cheng Y 2014 Chin. Phys. B 23 023201
|
[13] |
Wu C Y, Yang Y D, Liu Y Q and Gong Q H 2012 Phys. Rev. Lett. 109 043001
|
[14] |
Shafir D, Soifer H, Vozzi C, Johnson A S, Hartung A, Dube Z, Villeneuve D M, Corkum P B, Dudovich N and Staudte A 2013 Phys. Rev. Lett. 111 023005
|
[15] |
Li M, Liu Y Q, Ning Q C, Fu L B, Liu J, Deng Y K, Wu C Y, Peng L Y and Gong Q H 2013 Phys. Rev. Lett. 111 023006
|
[16] |
Hu B, Liu J and Chen S G 1997 Phys. Lett. A 236 533
|
[17] |
Yuan J, Li M, Sun X, Gong Q and Liu Y 2014 J. Phys. B: At. Mol. Opt. Phys. 47 015003
|
[18] |
Liu C and Hatsagortsyan K Z 2010 Phys. Rev. Lett. 105 113003
|
[19] |
Hao X L, Li W D, Liu J and Chen J 2012 Chin. Phys. B 21 083304
|
[20] |
Landau L D and Lifshitz E M 1977 Quantum Mechanics (New York: Pergamon)
|
[21] |
Delone N B and Krainov V P 1991 J. Opt. Soc. Am. B 8 1207
|
[22] |
Ammosov M V, Delone N B and Krainov V P 1986 Zh. Eksp. Teor. Fiz. 91 2008 [1986 Sov. Phys. JETP 64 1191]
|
[23] |
Goreslavski S P, Paulus G G and Popruzhenko S V 2004 Phys. Rev. Lett. 93 233002
|
[24] |
Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76
|
[25] |
Arissian L, Smeenk C, Turner F, Trallero C, Sokolov A V, Villeneuve D M, Staudte A and Corkum P B 2010 Phys. Rev. Lett. 105 133002
|
[26] |
Xie X, Roither S, Gräfe S, Kartashov D, Persson E, Lemell C, Zhang L, Schöffler M S, Baltuška A, Burgdörfer J and Kitzler M 2013 New J. Phys. 15 043050
|
[27] |
Comtois D, Villeneuve D M and Corkum P B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 1923
|
[28] |
Huismans Y, Rouzée A, Gijsbertsen A, et al. 2011 Science 331 61
|
[29] |
Blaga C I, Xu J, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|