Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
TOPICAL REVIEW—Optical field manipulation |
Prev
Next
|
|
|
Strong-field response time and its implications on attosecond measurement |
Chao Chen(陈超)1,†, Jiayin Che(车佳殷)1,†, Xuejiao Xie(谢雪娇)1, Shang Wang(王赏)1,2, Guoguo Xin(辛国国)3,‡, and Yanjun Chen(陈彦军)1,§ |
1 College of Physics and Information Technology, Shaan'xi Normal University, Xi'an 710119, China; 2 College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China; 3 School of Physics, Northwest University, Xi'an 710127, China |
|
|
Abstract To measure and control the electron motion in atoms and molecules by the strong laser field on the attosecond time scale is one of the research frontiers of atomic and molecular photophysics. It involves many new phenomena and processes and raises a series of questions of concepts, theories, and methods. Recent studies show that the Coulomb potential can cause the ionization time lag (about 100 attoseconds) between instants of the field maximum and the ionization-rate maximum. This lag can be understood as the response time of the electronic wave function to the strong-field-induced ionization event. It has a profound influence on the subsequent ultrafast dynamics of the ionized electron and can significantly change the time—frequency properties of electron trajectory (an important theoretical tool for attosecond measurement). Here, the research progress of response time and its implications on attosecond measurement are briefly introduced.
|
Received: 24 May 2021
Revised: 17 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foun dation of China (Grant No. 91750111) and the National Key Research and Development Program of China (Grant No. 2018YFB0504400). |
Corresponding Authors:
Guoguo Xin, Yanjun Chen
E-mail: xinguo@nwu.edu.cn;chenyjhb@gmail.com
|
Cite this article:
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军) Strong-field response time and its implications on attosecond measurement 2022 Chin. Phys. B 31 033201
|
[1] Keldysh L V 1965 Sov. Phys. JETP 20 1307 [2] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191 [3] Schafer K J, Yang B, DiMauro L I and Kulander K C 1993 Phys. Rev. Lett. 70 1599 [4] Yang B, Schafer K J, Walker B, Kulander K C, Agostini P and DiMauro L F 1993 Phys. Rev. Lett. 71 3770 [5] Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495 [6] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35 [7] Xu L and Fu L B 2019 Chin. Phys. Lett. 36 043202 [8] Yuan J Y, Ma Y X, Li R Y, Ma H Y, Zhang Y Z, Ye D F, Shen Z J, Yan T M, Wang X C, Weidemüller M and Jiang Y H 2020 Chin. Phys. Lett. 37 053201 [9] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 [10] L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B 24 3315 [11] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [12] Lewenstein M, Balcou Ph, Ivanov M Yu, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [13] Pan Y, Guo F M, Yang Y J and Ding D J 2019 Chin. Phys. B 28 113201 [14] Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett. 34 014206 [15] Niikura Hiromichi, Legare F, Hasbani R, Ivanov Misha Yu, Villeneuve D M and Corkum P B 2003 Nature 421 826 [16] Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Dörner R and Corkum P B 2005 Phys. Rev. Lett. 95 203003 [17] Becker W, Liu X, Ho P J and Eberly J H 2012 Rev. Mod. Phys. 84 1011 [18] Chen J H, Xu D D, Han T, Sun Y, Xu Q Y and Liu X S 2020 Chin. Phys. B 29 013203 [19] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y and Wang B B 2020 Chin. Phys. Lett. 37 113201 [20] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [21] Lepine F, Ivanov M Y and Vrakking M J J 2014 Nat. Photon. 8 195 [22] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Buttiker M and Keller U 2008 Science 322 1525 [23] Shu Z, Hao X L, Li W D and Chen J 2019 Chin. Phys. B 28 050301 [24] Xiao Z L, Quan W, Xu S P, Yu S G, Lai X Y, Chen J and Liu X J 2020 Chin. Phys. Lett. 37 043201 [25] Xu S L, Zhang Q B, Ran C, Huang X, Cao W and Lu P X 2021 Chin. Phys. B 30 013202 [26] Luo J H, Li J and Zhang H F 2020 Chin. Phys. B 29 123201 [27] Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O and Dudovich N 2012 Nature 485 343 [28] Dahlstrom J M, L'Huillier A and Maquet A 2012 J. Phys. B 45 183001 [29] Wei C L and Zhao X 2019 Chin. Phys. B 28 013201 [30] Leone S R, McCurdy C W, Burgdorfer J, et al. 2014 Nat. Photon. 8 162 [31] Muga J G, Sala Mayato R and Egusquiza Í L (eds.)2002 Time in Quantum Mechanics (Vol. 1) (Berlin, Heidelberg:Springer) pp. 5-6 [32] Maquet A, Caillat J and Taïeb R 2014 J. Phys. B 47 204004 [33] Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765 [34] Xie X J, Chen C, Xin G G, Liu J and Chen Y J 2020 Opt. Express 28 33228 [35] Wang S, Cai J and Chen Y J 2017 Phys. Rev. A 96 043413 [36] Wang S, Che J Y, Chen C, Xin G G and Chen Y J 2020 Phys. Rev. A 102 053103 [37] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903 [38] Chen Y J, Liu J and Hu Bambi 2009 Phys. Rev. A 79 033405 [39] Frumker E, Hebeisen C T, Kajumba N, Bertrand J B, Wörner H J, Spanner M, Villeneuve D M, Naumov A and Corkum P B 2012 Phys. Rev. Lett. 109 113901 [40] Etches A, Gaarde M B and Madsen L B 2012 Phys. Rev. A 86 023818 [41] Li W Y, Yu S J, Wang S and Chen Y J 2016 Phys. Rev. A 94 053407 [42] Brabec T, Ivanov M Yu and Corkum P B 1996 Phys. Rev. A 54 R2551 [43] Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B 39 R203 [44] Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P and DiM L F 2009 Nat. Phys. 5 335 [45] Goreslavski S P, Paulus G G, Popruzhenko S V and Shvetsov-Shilovski N I 2004 Phys. Rev. Lett. 93 233002 [46] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002 [47] Feit M D, Fleck J A, Jr and Steiger A 1982 J. Comput. Phys. 47 412 [48] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2013 Trajectory-based Coulomb-corrected strong field approximation (Springer) 104 pp. 1-16 [49] Milošević D B and Becker W 2002 Phys. Rev. A 66 063417 [50] Ren D X, Wang S, Chen C, Li X K, Yu X T, Zhao X N, Ma P, Wang C C, Luo S Z, Chen Y J and Ding D J 2021 arXiv:2105.07619[physics.atom-ph] [51] Sainadh U S, Xu H, Wang X, Atia-Tul-Noor A, Wallace W C, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T and Litvinyuk I V 2019 Nature 568 75 [52] Han M, Ge P P, Fang Y Q, Yu X Y, Guo Z N, Ma X Y, Deng Y K, Gong Q H and Liu Y Q 2019 Phys. Rev. Lett. 123 073201 [53] Chen Y J 2011 Phys. Rev. A 84 043423 [54] Torlina L and Smirnova O 2017 New J. Phys. 19 023012 [55] Che J Y, Chen C, Wang S, Xin G G and Chen Y J 2021 Phys. Rev. A 104 063104 [56] Che J Y, Chen C, Wang S, Xin G G and Chen Y J 2021 arXiv:2103.16876[physics.atom-ph] [57] Wang S, Xu R H, Li W Y, Liu X, Li W, Xin G G and Chen Y J 2020 Opt. Express 28 4650 [58] Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S and Dangor A E 1996 Phys. Rev. Lett. 76 1832 [59] von der Linde D, Sokolowski-Tinten K and Bialkowski J 1997 Appl. Surf. Sci. 109-110 1 [60] Hohenleutner M, Langer F, Schubert O, Knorr M, Huttner U, Koch S W, Kira M and Huber R 2015 Nature 523 572 [61] Ghimire S and Reis D A 2019 Nat. Phys. 15 10 [62] Heissler P, Lugovoy E, Hörlein R, Waldecker L, Wenz J, Heigoldt M, Khrennikov K, Karsch S, Krausz F, Abel B and Tsakiris G D 2014 New J. Phys. 16 113045 [63] Luu T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J and Wörner H J 2018 Nat. Commun. 9 3723 [64] Zeng A W and Bian X B 2020 Phys. Rev. Lett. 124 203901 [65] Donnelly T D, Ditmire T, Neuman K, Perry M D and Falcone R W 1996 Phys. Rev. Lett. 76 2472 [66] Fennel Th, Meiwes-Broer K H, Tiggesbäumker J, Reinhard P G, Dinh P M and Suraud E 2010 Rev. Mod. Phys. 82 1793 [67] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725 [68] Teubner U and Gibbon P 2009 Rev. Mod. Phys. 81 445 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|