|
Abstract Based on the two-dimensional (2D) discrete Rulkov model that is used to describe neuron dynamics, this paper presents a continuous non-autonomous memristive Rulkov model. The effects of electromagnetic induction and external stimulus are simultaneously considered herein. The electromagnetic induction flow is imitated by the generated current from a flux-controlled memristor and the external stimulus is injected using a sinusoidal current. Thus, the presented model possesses a line equilibrium set evolving over the time. The equilibrium set and their stability distributions are numerically simulated and qualitatively analyzed. Afterwards, numerical simulations are executed to explore the dynamical behaviors associated to the electromagnetic induction, external stimulus, and initial conditions. Interestingly, the initial conditions dependent extreme multistability is elaborately disclosed in the continuous non-autonomous memristive Rulkov model. Furthermore, an analog circuit of the proposed model is implemented, upon which the hardware experiment is executed to verify the numerically simulated extreme multistability. The extreme multistability is numerically revealed and experimentally confirmed in this paper, which can widen the future engineering employment of the Rulkov model.
|
Received: 15 July 2021
Revised: 09 October 2021
Accepted manuscript online: 13 October 2021
|
PACS:
|
87.50.-a
|
(Effects of electromagnetic and acoustic fields on biological systems)
|
|
87.19.ll
|
(Models of single neurons and networks)
|
|
87.23.Kg
|
(Dynamics of evolution)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172066, 61801054, and 51777016), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160282), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_2823). |
Corresponding Authors:
Bo-Cheng Bao
E-mail: mervinbao@126.com
|
Cite this article:
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成) Continuous non-autonomous memristive Rulkov model with extreme multistability 2021 Chin. Phys. B 30 128702
|
[1] Yao Z, Zhou P, Zhu Z G and Ma J 2021 Neurocomputing 423 518 [2] Xu L F, Li C D and Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese) [3] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [4] Morris C and Lecar H 1981 Biophys. J. 35 193 [5] Chay T R 1985 Physica D 16 233 [6] Xu Q, Tan X, Zhu D, Bao H, Hu Y H and Bao B C 2020 Chaos Solitons Fractals 141 110353 [7] Wilson H R 1999 J. Theor. Biol. 200 375 [8] Hindmarsh J L and Rose R M 1982 Nature 296 162 [9] FitzHugh R 1961 Biophys. J. 1 445 [10] Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499 [11] Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I and Abarbanel H D I 1998 Phys. Rev. Lett. 81 5692 [12] Bao B C, Hu A H, Xu Q, Bao H, Wu H G and Chen M 2018 Nonlinear Dyn. 92 1695 [13] Bao H, Hu A H and Liu W B 2019 Int. J. Bifurc. Chaos 29 1950006 [14] Ge M Y, Jia Y, Xu Y and Yang L J 2018 Nonlinear Dyn. 91 515 [15] Parastesh F, Rajagopal K, Karthikeyan A, Alsaedi A, Hayat T and Pham V T 2018 Cogn. Neurodyn. 12 607 [16] Lv M and Ma J 2016 Neurocomputing 205 375 [17] Qu L H, Du L, Deng Z C, Cao Z L and Hu H W 2018 Chin. Phys. B 27 118707 [18] Yuan Z X, Feng P H, Du M M and Wu Y 2020 Chin. Phys. B 29 030504 [19] Lv M, Wang C N, Ren G D, Ma J and Song X L 2016 Nonlinear Dyn. 85 1479 [20] An X L and Qiao S 2021 Chaos Solitons Fractals 143 110587 [21] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569 [22] Carpenter C J 1999 IEE Proceedings-Science, Measur. Technol. 146 182 [23] Chua L O 2015 Radioengineering 24 319 [24] Xu Q, Lin Y, Bao B C and Chen M 2016 Chaos Solitons Fractals 83 186 [25] Wu F Q, Wang C N, Xu Y and Ma J 2016 Sci. Rep. 6 28 [26] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569 [27] Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S, Jin J and Du S C 2021 Front. Phys. 9 690651 [28] Kafraj M S, Parastesh F and Jafari S 2020 Chaos Solitons Fractals 137 109782 [29] Wang Y, Ma J, Xu Y, Wu F Q and Zhou P 2017 Int. J. Bifurc. Chaos 27 1750030 [30] Jin W Y, Wang A, Ma J and Lin Q 2019 Sci. China Technol. Sci. 62 2113 [31] Ge M Y, Jia Y, Xu Y and Yang L J 2018 Nonlinear Dyn. 91 515 [32] Qu L H, Du L, Hu H W, Cao Z L and Deng Z C 2020 Nonlinear Dyn. 102 2739 [33] Gu H G, Pan B B and Li Y Y 2015 Nonlinear Dyn. 82 1191 [34] Bao H, Hu A H, Liu W B and Bao B C 2020 IEEE Trans. Neural Netw. Learning Sys. 31 502 [35] Lin H R, Wang C H, Sun Y C and Yao W 2020 Nonlinear Dyn. 100 3667 [36] Bao H, Liu W B and Hu A H 2019 Nonlinear Dyn. 95 43 [37] Marco M D, Forti M and Pancioni L 2017 IEEE Trans. Cybernetics 47 2970 [38] Lai Q, Hu B, Guan Z H, Li T, Zheng D F and Wu Y H 2016 Neurocomputing 207 785 [39] Tang Y X, Khalaf A J M, Rajagopal K, Pham V T, Jafari S and Tian Y 2018 Chin. Phys. B 27 040502 [40] Li C B, Xu Y J, Chen G R, Liu Y J and Zheng J C 2019 Nonlinear Dyn. 95 1245 [41] Yu F, Qian S, Chen X, Huang Y Y, Cai S, Jin J and Du S C 2021 Complexity 2021 6683284 [42] Bao H, Liu W B and Chen M 2019 Nonlinear Dyn. 96 1879 [43] Rulkov N F 2002 Phys. Rev. E 65 041922 [44] Wang G H, Peng M S, Zuo J and Cheng R R 2017 Nonlinear Dyn. 89 2553 [45] Li D, Zheng Y and Yang Y 2019 Indian J. Phys. 93 1477 [46] Bashkirtseva I, Nasyrova V and Ryashko L 2020 Int. J. Bifurc. Chaos 30 2050153 [47] Bashkirtseva I, Nasyrova V and Ryashko L 2018 Chaos Soliton Fractals 110 76 [48] Wang C X and Cao H J 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 536 [49] Sun H J and Cao H J 2016 Commun. Nonlinear Sci. Numer. Simulat. 40 15 [50] Budzinski R C, Lopes S R and Masoller C 2021 Neurocomputing 1 44 [51] Sarbendu R, Arnob R, Bera B K and Dibakar G 2018 Nonlinear Dyn. 94 785 [52] Xu Q, Song Z, Bao H, Chen M and Bao B C 2018 AEU-Int. J. Electron. Commun. 96 66 [53] Xu W, Wang Y Q, Li Y F, Gao F, Zhang M C, Lian X J, Wan X, Xiao J and Tong Y 2019 Acta Phys. Sin. 68 238501 (in Chinese) [54] Chen J C, Chen J Q, Bao H, Chen M and Bao B C 2018 Nonlinear Dyn. 95 3385 [55] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285 [56] Bao B C, Xu Q, Bao H and Chen M 2016 Electron. Lett. 52 1008 [57] Bao H, Chen M, Wu H G and Bao B C 2020 Sci. China Tech. Sci. 63 603 [58] Jafari S, Ahmadi A, Khalaf A, Abdolmohammadi H R, Pham V T and Alsaadi F E 2018 Int. J. Electron. Commun. (AEÜ) 89 131 [59] Yuan F, Wang G Y, Shen Y R and Wang X Y 2016 Nonlinear Dyn. 86 37 [60] Bao B C, Zhu Y X, Ma J, Bao H, Wu H G and Chen M 2021 Sci. China Tech. Sci. 64 1107 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|