|
|
Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer |
Xiangwei Qu(瞿祥炜)1,2, Jingrui Ma(马精瑞)1,2, Siqi Jia(贾思琪)1,2,3, Zhenghui Wu(吴政辉)1,2, Pai Liu(刘湃)1,2, Kai Wang(王恺)1,2, and Xiao-Wei Sun(孙小卫)1,2,3,† |
1 Key Laboratory of Energy Conversion and Storage Technologies(Ministry of Education), Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 3 Shenzhen Planck Innovation Technology Pte. Ltd, Liu-He Road, Shenzhen 518173, China |
|
|
Abstract In blue quantum dot light emitting diodes (QLEDs), electron injection is insufficient, which would degrade device efficiency and stability. Herein, we employ chlorine passivated ZnO nanoparticles as electron transport layer to facilitate electron injection into QDs effectively. Moreover, it suppresses exciton quenching at the QD/ZnO interface by blocking charge transfer channel. As a result, the maximum external quantum efficiency of blue QLED was increased from 2.55% to 4.60%, and the operation lifetime of blue QLED was nearly 4 times longer than that of the control device. Our work indicates that election injection plays an important role in blue QLED efficiency and stability.
|
Received: 18 June 2021
Revised: 04 August 2021
Accepted manuscript online: 01 September 2021
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
07.20.Mc
|
(Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)
|
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0401702 and 2017YFE0120400), the National Natural Science Foundation of China (Grant Nos. 62005114, 62005115, and 61875082), Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010925001 and 2019B010924001), Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting (Grant No. 2017KSYS007), Natural Science Foundation of Guangdong Province, China (Grant No. 2017B030306010), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515110437), Shenzhen Peacock Team Project (Grant No. KQTD2016030111203005), and High Level University Fund of Guangdong Province, China (Grant No. G02236004). |
Corresponding Authors:
Xiao-Wei Sun
E-mail: sunxw@sustech.edu.cn
|
Cite this article:
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫) Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer 2021 Chin. Phys. B 30 118503
|
[1] Colvin V L, Schlamp M C and Allvisatos 1994 Nature 370 354 [2] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800 [3] Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717 [4] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341 [5] Qian L, Zheng Y, Xue J G and Holloway P 2011 Nat. Photon. 5 543 [6] Shen H B, Cao W R, Shewmon N, Yang C C, Li N S and Xue J G 2015 Nano Lett. 15 1211 [7] Zou Y T, Ban M Y, Cui W, Huang Q, Wu C, Liu J W, Wu H H, Song T and Sun B Q 2017 Adv. Funct. Mater. 27 1603325 [8] Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P and Peng X G 2014 Nature 515 96 [9] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J, Xue J G, Holloway P and Qian L 2015 Nat. Photon. 9 259 [10] S.Mashford B, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P 2013 Nat. Photon. 7 407 [11] Shen H B, Gao Q, Zhang Y B, Lin Y, Lin Q L, Li Z H, Chen L, Zeng Z P, Li X G, Jia Y, Wang S J, Du Z L, Li L S and Zhang Z Y 2019 Nat. Photon. 13 192 [12] Song J J, Wang O Y, Shen H B, Lin Q L, Li Z H, Wang L, Zhang X T and Li L S 2019 Adv. Funct. Mater. 29 1808377 [13] Cao W R, Xiang C Y, Yang Y X, Chen Q, Chen L W, Yan X L and Qian L 2018 Nat. Commun. 9 2608 [14] Kim T, Kim K H, Kim S, Choi S M, Jang H, Seo H K, Lee H, Chung D Y and Jang E 2020 Nature 586 385 [15] Pu C D, Dai X L, Shu Y F, Zhu M Y, Deng Y Z, Jin Y Z and Peng X G 2020 Nat. Commun. 11 937 [16] Wang L S, Lin J, Hu Y S, Guo X Y, Lv Y, Tang Z B, Zhao J L, Fan Y, Zhang N, Wang Y J and Liu X Y ACS 2017 Appl. Mater. Interfaces 9 38755 [17] Lin Q L, Wang L, Li Z H, Shen H B, Guo L J, Kuang Y M, Wang H Z and Li L S 2018 ACS Photon. 5 939 [18] Qu X Y, Zhang N, Cai R, Kang B N, Chen S M, Xu B, Wang K and Sun X W 2019 Appl. Phys. Lett. 114 071101 [19] Li D Y, Bai J K, Zhang T T, Chang C, Jin X, Huang Z, Xu B and Li Q H 2019 Chem. Commun. 55 3501 [20] Shirasaki Y, J.Supran G, G.Bawendi M aand Bulovic V 2012 Nat. Photon. 7 13 [21] Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Yoon D, Char K, Lee S and Lee C 2012 Nano Lett. 12 2362 [22] Lee K H, Lee J H, Song W S, Ko H, Lee C, Lee J and Yang H 2013 ACS Nano 7 7295 [23] Jia H R, Wang F Z and Tan Z A 2020 Nanoscale 12 13186 [24] Cheng T, Wang F Z, Sun W D, Wang Z B, Zhang J, You B G, Li Y, Hayat T, Alsaed A and Tan Z A 2019 Adv. Electron. Mater. 5 1800794 [25] Zhong Z J, Zou J H, Jiang Y B, Lan L H, Song C, He Z W, Mu L, Wang L, Wang J, Peng J B and Cao Y 2018 Organic Electronics 58 245 [26] Shi Y L, Liang F, Hu Y, Zhuo M P, Wang X D and Liao L S 2017 Nanoscale 9 14792 [27] Chen S, Cao W R, Liu T L, Tsang S W, Yang Y X, Yan X L and Qian L 2019 Nat. Commun. 10 765 [28] Sun Y Z, Jiang Y B, Peng H R, Wei J L, Zhang S D and Chen S M 2017 Nanoscale 9 8962 [29] Ding K, Chen H T, Fan L W, Wang B, Huang Z, Zhuang S Q, Hu B and Wang L 2017 ACS Appl. Mater. Interfaces 9 20231 [30] Li Z W 2017 Vacuum 137 38 [31] Zhang H and Chen S M 2019 J. Mater. Chem. C 7 2291 [32] Jiang W and Chae H 2020 J. Phys. Chem. C 124 25221 [33] Moon H, Lee W and Chae H 2019 IEEE Electron Dev. Lett. 40 1872 [34] Chen F, Liu Z Y, Guan Z Y, Liu Z M, Deng Z B, Teng F and Tang A W 2018 ACS Photon. 5 3704 [35] Choi J, Kim Y, Jo J W, Kim J, Sun B, Walters G, Li Y Y, Tan C S, Quan L N, Kam A P T, Hoogland S, Lu Z H, Voznyy O and H. Sargent E 2017 Adv. Mater. 29 1702350 [36] Lu Junfeng, Xu C X, Dai J, Li J T, Wang Y Y, Lin Y and Li P L 2015 Nanoscale 7 3396 [37] Kim O S, Kang B H, Lee J S, Lee S W, Cha S H, Lee J W, Kim S W, Kim S H and Kang S W 2016 IEEE Electron Dev. Lett. 37 1022 [38] Shrotriya V and Yang Y 2005 J. Appl. Phys. 97 054504 [39] Chen D S, Chen D, Dai X L, Zhang Z X, Lin J, Deng Y Z, Hao Y L, Zhang C, Zhu H M, Gao F and Jin Y Z 2020 Adv. Mater. 2006178 [40] Ding S H, Wu Z H, Qu X Y, Tang H D, Wang K, Xu B and Sun X W 2020 Appl. Phys. Lett. 117 093501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|