Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108703    DOI: 10.1088/1674-1056/ac1e0e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Diffusion of nucleotide excision repair protein XPA along DNA by coarse-grained molecular simulations

Weiwei Zhang(张伟伟) and Jian Zhang(张建)
National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Protein XPA plays critical roles in nucleotide excision repair pathway. Recent experimental work showed that the functional dynamics of XPA involves the one-dimensional diffusion along DNA to search the damage site. Here, we investigate the involved dynamical process using extensive coarse-grained molecular simulations at various salt concentrations. The results demonstrated strong salt concentration dependence of the diffusion mechanisms. At low salt concentrations, the one-dimensional diffusion with rotational coupling is the dominant mechanism. At high salt concentrations, the diffusion by three-dimensional mechanism becomes more probable. At wide range of salt concentrations, the residues involved in the DNA binding are similar and the one-dimensional diffusion of XPA along DNA displays sub-diffusive feature. This sub-diffusive feature is tentatively attributed to diverse strengths of XPA-DNA interactions. In addition, we showed that both binding to DNA and increasing salt concentration tend to stretch the conformation of the XPA, which increases the exposure extent of the sites for the binding of other repair proteins.
Keywords:  nucleotide excision repair      XPA      one-dimensional diffusion along DNA      molecular simulation  
Received:  11 April 2021      Revised:  07 July 2021      Accepted manuscript online:  17 August 2021
PACS:  87.14.E- (Proteins)  
  87.14.gk (DNA)  
  87.15.kj (Protein-polynucleotide interactions)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974173 and 11774158) and the HPC center of Nanjing University.
Corresponding Authors:  Jian Zhang     E-mail:  jzhang@nju.edu.cn

Cite this article: 

Weiwei Zhang(张伟伟) and Jian Zhang(张建) Diffusion of nucleotide excision repair protein XPA along DNA by coarse-grained molecular simulations 2021 Chin. Phys. B 30 108703

[1] Batty D P and Wood R D 2000 Gene 241 193
[2] Shuck S C, Short E A and Turchi J J 2008 Cell Res. 18 64
[3] Gillet L C and Schärer O D 2006 Chem. Rev. 106 253
[4] Schärer O D 2013 Cold Spring Harbor Perspect. Biol. 5 a012609
[5] Hoeijmakers J H 2001 Nature 411 366
[6] Fassihi H, Sethi M, Fawcett H et al. 2016 Proc. Natl. Acad. Sci. USA 113 E1236
[7] Sugitani N, Sivley R M, Perry K E, Capra J A and Chazin W J 2016 DNA Repair 44 123
[8] Lian F, Yang X, Yang W, Jiang Y and Qian C 2019 Biochem. Biophys. Res. Commun. 514 985
[9] Brown K L, Roginskaya M, Zou Y, Altamirano A, Basu A K and Stone M P 2010 Nucleic Acids Res. 38 428
[10] Kuraoka I, Morita E H, Saijo M, Matsuda T, Morikawa K, Shirakawa M and Tanaka K 1996 Mutat. Res.-DNA Repair 362 87
[11] Missura M, Buterin T, Hindges R, Hübscher U, Kaspárková J, Brabec V and Naegeli H 2001 Embo J. 20 3554
[12] Fadda E 2016 Comp. Struct. Biotechnol. J. 14 78
[13] Yang Z, Roginskaya M, Colis L C, Basu A K, Shell S M, Liu Y, Musich P R, Harris C M, Harris T M and Zou Y 2006 Biochemistry 45 15921
[14] Li C, Golebiowski F M, Onishi Y, Samara N L, Sugasawa K and Yang W 2015 Mol. Cell 59 1025
[15] Tsodikov O V, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Schärer O D, Wagner G and Ellenberger T 2007 Embo J. 26 4768
[16] Tripsianes K, Folkers G E, Zheng C, Das D, Grinstead J S, Kaptein R and Boelens R 2007 Nucleic Acids Res. 35 5789
[17] Li L, Elledge S J, Peterson C A, Bales E S and Legerski R J 1994 Proc. Natl. Acad. Sci. USA 91 5012
[18] Sugitani N, Shell S M, Soss S E and Chazin W J 2014 J. Am. Chem. Soc. 136 10830
[19] Hilton B, Shkriabai N, Musich P R, Kvaratskhelia M, Shell S and Zou Y 2014 Biosci. Rep. 34
[20] Topolska-woś A M, Sugitani N, Cordoba J J et al. 2020 Nucleic Acids Res. 48 2173
[21] Marteijn J A, Lans H, Vermeulen W and Hoeijmakers J H 2014 Nat. Rev. Mol. Cell Biol. 15 465
[22] Beckwitt E C, Jang S, Detweiler I C et al. 2020 Nat. Commun. 11 1
[23] Villa E, Balaeff A, Mahadevan L and Schulten K 2004 Multiscale Model. Simul. 2 527
[24] Kirmizialtin S, Nguyen V, Johnson K A and Elber R 2012 Structure 20 618
[25] Silva D, Weiss D R, Avila F P, Da L, Levitt M, Wang D and Huang X 2014 Proc. Natl. Acad. Sci. USA 111 7665
[26] Hognon C, Garaude S, Timmins J, Chipot C, Dehez F and Monari A 2019 J. Phys. Chem. Lett. 10 7200
[27] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550
[28] Li W, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504
[29] Freeman G S, Hinckley D M, Lequieu J P, Whitmer J K and De pablo J J 2014 J. Chem. Phys. 141 10B615_1
[30] Freeman G S, Lequieu J P, Hinckley D M, Whitmer J K and De pablo J J 2014 Phys. Rev. Lett. 113 168101
[31] Tan C, Terakawa T and Takada S 2016 J. Am. Chem. Soc. 138 8512
[32] Potoyan D A, Zheng W, Komives E A and Wolynes P G 2016 Proc. Natl. Acad. Sci. USA 113 110
[33] Brandani G B, Niina T, Tan C and Takada S 2018 Nucleic Acids Res. 46 2788
[34] Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, Yao X and Takada S 2011 J. Chem. Theory Comput. 7 1979
[35] Li W, Terakawa T, Wang W and Takada S 2012 Proc. Natl. Acad. Sci. USA 109 17789
[36] Li W, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25
[37] Brandani G B and Takada S 2018 PLoS Comput. Biol. 14 e1006512
[38] Li W, Wang J, Zhang J, Takada S and Wang W 2019 Phys. Rev. Lett. 122 238102
[39] Tan C and Takada S 2020 Proc. Natl. Acad. Sci. USA 117 20586
[40] Lu J, Zhang X, Wu Y, Sheng Y, Li W and Wang W 2021 Biophys. J. 120 1971
[41] Dey P and Bhattacherjee A 2019 J. Phys. Chem. B 123 10354
[42] Terakawa T and Takada S 2014 J. Chem. Theory Comput. 10 711
[43] šali A, Potterton L, Yuan F, Van vlijmen H and Karplus M 1995 Proteins 23 318
[44] Lu X and Olson W K 2008 Nat. Protoc. 3 1213
[45] Delano W L 2002 CCP4 Newsletter on protein crystallography 40 82
[46] Lian F, Yang X, Jiang Y, Yang F, Li C, Yang W and Qian C 2020 Int. J. Biol. Macromol. 148 466
[47] Terakawa T, Kenzaki H and Takada S 2012 J. Am. Chem. Soc. 134 14555
[48] Iwahara J, Zweckstetter M and Clore G M 2006 Proc. Natl. Acad. Sci. USA 103 15062
[49] Iwahara J and Clore G M 2006 Nature 440 1227
[50] Vuzman D and Levy Y 2012 Mol. Biosyst. 8 47
[51] Von hippel P H and Berg O G 1989 J. Biol. Chem. 264 675
[52] Halford S E and Marko J F 2004 Nucleic Acids Res. 32 3040
[53] Von hippel P H 1994 Science 263 769
[54] Givaty O and Levy Y 2009 J. Mol. Biol. 385 1087
[55] Blainey P C, Van oijen A M, Banerjee A, Verdine G L and Xie X S 2006 Proc. Natl. Acad. Sci. USA 103 5752
[56] Pingoud A and Wende W 2007 Structure 15 391
[57] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
[58] Guigas G and Weiss M 2008 Biophys. J. 94 90
[59] Soula H, Caré B, Beslon G and Berry H 2013 Biophys. J. 105 2064
[60] Havlin S and Ben-avraham D 1987 Adv. Phys. 36 695
[61] Scher H and Montroll E W 1975 Phys. Rev. B 12 2455
[62] Jeon J, Monne H M, Javanainen M and Metzler R 2012 Phys. Rev. Lett. 109 188103
[63] Xia C, He X, Wang J and Wang W 2020 Phys. Rev. E 102 062424
[64] Liu L, Cherstvy A G and Metzler R 2017 J. Phys. Chem. B 121 1284
[65] Metzler R, Jeon J, Cherstvy A G and Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128
[66] Barr J J, Auro R, Sam-soon N et al. 2015 Proc. Natl. Acad. Sci. USA 112 13675
[67] Saxton M J 2007 Biophys. J. 92 1178
[68] Metzler R and Klafter J 2000 Phys. Rep. -Rev. Sec. Phys. Lett. 339 1
[69] Golan Y and Sherman E 2017 Nat. Commun. 8 1
[70] Banerjee A, Santos W L and Verdine G L 2006 Science 311 1153
[71] Blainey P C, Luo G, Kou S, Mangel W F, Verdine G L, Bagchi B and Xie X S 2009 Nat. Struct. Mol. Biol. 16 1224
[72] Goh C, Milburn D and Gerstein M 2004 Curr. Opin. Struct. Biol. 14 104
[73] Hartl F U 1996 Nature 381 571
[74] Park P S, Lodowski D T and Palczewski K 2008 Ann. Rev. Pharmacol. Toxicol. 48 107
[75] Zhang M, Tanaka T and Ikura M 1995 Nat. Struct. Biol. 2 758
[76] Chu X, Liu F, Maxwell B A, Wang Y, Suo Z, Wang H, Han W and Wang J 2014 PLoS Comput. Biol. 10 e1003804
[77] Azia A and Levy Y 2009 J. Mol. Biol. 393 527
[78] Maity H, Muttathukattil A N and Reddy G 2018 J. Phys. Chem. Lett. 9 5063
[79] Levy Y, Onuchic J N and Wolynes P G 2007 J. Am. Chem. Soc. 129 738
[80] Liu J L, Rigolet P, Dou S, Wang P and Xi X G 2004 J. Biol. Chem. 279 42794
[81] Fan J and Pavletich N P 2012 Genes Dev. 26 2337
[82] Rudolph J, Mahadevan J and Luger K 2020 Biochemistry 59 2003
[83] Nocentini S, Coin F, Saijo M, Tanaka K and Egly J 1997 J. Biol. Chem. 272 22991
[84] Buchko G W, Daughdrill G W, De lorimier R et al. 1999 Biochemistry 38 15116
[85] Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles C J, Edwards A M and Chazin W J 2000 Cell 103 449
[86] Borszéková pulzová L, Ward T A and Chovanec M 2020 Int. J. Mol. Sci. 21 2182
[87] Jeltsch A, Alves J, Wolfes H, Maass G and Pingoud A 1994 Biochemistry 33 10215
[88] Sun J, Viadiu H, Aggarwal A K and Weinstein H 2003 Biophys. J. 84 3317
[1] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[6] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[7] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[8] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[9] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[10] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[13] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[14] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[15] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
No Suggested Reading articles found!